
Client-side Name Collision Vulnerability in the New gTLD Era:
A Systematic Study

Qi Alfred Chen, Matthew Thomas†, Eric Osterweil†, Yulong Cao, Jie You, Z. Morley Mao
University of Michigan, †Verisign Labs

alfchen@umich.edu,{mthomas,eosterweil}@verisign.com,{yulongc,jieyou,zmao}@umich.edu

ABSTRACT

The recent unprecedented delegation of new generic top-level do-

mains (gTLDs) has exacerbated an existing, but fallow, problem

called name collisions. One concrete exploit of such problem was

discovered recently, which targets internal namespaces and en-

ables Man in the Middle (MitM) attacks against end-user devices

from anywhere on the Internet. Analysis of the underlying prob-

lem shows that it is not speci�c to any single service protocol, but

little attention has been paid to understand the vulnerability status

and the defense solution space at the service level. In this paper,

we perform the �rst systematic study of the robustness of internal

network services under name collision attacks.

We �rst perform a measure study and uncover a wide spectrum

of services a�ected by the name collision problem. We then collect

their client implementations and systematically analyze their vul-

nerability status under name collision attacks using dynamic anal-

ysis. Out of the 48 identi�ed exposed services, we �nd that nearly

all (45) of them expose vulnerabilities in popular clients. To demon-

strate the severity, we construct exploits and �nd a set of new name

collision attacks with severe security implications including MitM

attacks, internal or personal document leakage, malicious code in-

jection, and credential theft. We analyze the causes, and �nd that

the name collision problem broadly breaks common security as-

sumptions made in today’s service client software. Leveraging the

insights from our analysis, we propose multiple service software

level solutions, which enables the victim services to actively de-

fend against name collision attacks.

1 INTRODUCTION

With the unprecendented delegation of new generic top-level do-

mains (gTLDs) since late 2013, increasing amounts of leaked in-

ternal domain name system (DNS) namespace queries are now

resolvable in the public DNS namespace [102]. This has exacer-

bated a long existing problem, which has been lying fallow, called

name collisions, in which a DNS query is resolved in an unin-

tended namespace [44, 102]. One concrete exploit of such problem

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.

CCS’17, Oct. 30–Nov. 3, 2017, Dallas, TX, USA.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4946-8/17/10. . . $15.00
DOI: 10.1145/3133956.3134084

was recently annouced (US-CERT alert TA16-144A), which specif-

ically targets the leaked WPAD (Web Proxy Auto-Discovery) ser-

vice discovery queries [79, 87]. In this attack, the attacker simply

needs to register a domain that already receives vulnerable internal

WPAD query leaks. Since WPAD queries are designed for discover-

ing and automatically con�guring web proxy services, exploiting

these leaks allows the attacker to set up Man in the Middle (MitM)

proxies on end-user devices from anywhere on the Internet.

The cornerstone of this attack exploits the leaked service dis-

covery queries from the internal network services using DNS-

based service discovery. With over 600 services registered to sup-

port DNS-based service discovery [41], the name collision prob-

lem seems likely to be much broader than theWPAD service alone.

However, previous work primarily focus on analyzing and prevent-

ing name collisions at the new gTLD registry and the network lev-

els [44, 87, 95, 102], little attention has been paid to understand

the vulnerability status and the defense solution space at the ser-

vice level. Since services are the direct victims of name collision

attacks, it is necessary to provide service-level solutions so that

they can proactively protect themselves. More importantly, since

the underlying cause is the domain name resolution in an unin-

tended namespace, compared to defenses at other levels, only the

service clients, the actual issuers of the exploited queries, know

the intended namespace and thus have the chance to fundamen-

tally solve the problem.

In this paper, we perform the �rst systematic study of the ro-

bustness of the service client design and implementations under

the name collision attack threat model for internal network ser-

vices using DNS-based service discovery. Our goal is to systemat-

ically identify client-side name collision vulnerability in the client

software, which causes the client to mistakenly accept the iden-

tity of a name collision attack server. Our results are expected to

serve as a guideline for understanding whether and why a certain

client software is vulnerable, as well as providing insights on how

to mitigate against this emerging class of attacks. To perform the

study, we �rst measure the services that are exposed to potential

name collisions today by analyzing the leaked queries to the dele-

gated new gTLDs. Based on themeasurement, we form an exposed

service dataset with 80 services with high volumes of service dis-

covery query leaks. Compared to the recent study on the WPAD

service [87], our study for the �rst time uncovers the wide spec-

trum of services a�ected by the name collision problem and the

potential security implications.

With the set of exposed services, wemanually collect their client

software, with prioritization for services with higher query leak

volumes and clients that are more popular among corporate or end

1

Session D5: Network Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

941

users. In total, we are able to collect 57 client implementations cov-

ering 48 exposed services. To systematically perform vulnerability

analysis, we develop a dynamic analysis framework capable of ana-

lyzing the clients in a simulated name collision attack environment.

The analysis is performed by constructing attack server responses,

and a vulnerability is revealed if the client accepts the responses

and proceeds with the designed service functionality.

From the vulnerability analysis, our results reveal that nearly all

(45) of these 48 services have popular clients vulnerable due to sev-

eral common software design or implementation choices. We �nd

that the lack of server authentications, which is also exhibited in

the WPAD exploit, is the root cause for one third of these vulnera-

ble services. For the remaining two thirds, their clients do use stan-

dard server authentications by default, leveraging TLS certi�cates

or pre-shared keys (PSK). However, nearly all clients using TLS cer-

ti�cates are found vulnerable due to the default choice of accepting

publicly-valid but previously-unseen certi�cates from a colliding

domain. For the clients using PSK, we �nd that majority (88.1%)

of them are vulnerable since they do not enforce server authenti-

cation. We also �nd a common vulnerable design choice speci�c

to a previously uncovered but popular use of DNS-based service

discovery, Zero-con�guration networking (Zeroconf) [14], which

mixes the service discovery in di�erent namespaces. These results

show that even with standard server authentication adopted, the

name collision attack threat model still broadly breaks common se-

curity assumption in today’s internal network service clients. We

�nd that one fundamental cause is the lack of namespace di�eren-

tiation in the current service discovery and server authentication

methods. This problem is newly introduced by the name collision

problem and it leaves the clients incapable of handling potential

name collisions.

To demonstrate the severity of the discovered vulnerabilities,

we construct exploits in our analysis framework and report our

�ndings on a number of new name collision attacks. These attacks

are able to induce exploitation to a wide range of popular internal

network services, including MitM attacks on the Windows tunnel-

ing service, malicious library injection on the Ruby library discov-

ery service, document leakage on the macOS printer discovery ser-

vice, credential theft on the remote connection services in macOS

Terminal, and phishing attacks on the VoIP service in Linphone

and the contacts and calendar services in macOS and iOS. Through

these case studies, we demonstrate the high end-to-end exploitabil-

ity of the identi�ed vulnerabilities in practice.

With increasingly more new gTLDs being delegated, such wide-

spread vulnerabilities in the exposed service clients become more

critical than ever and require immediate attention and remediation.

Based on the insights from our study, we propose a series of service

client software design guidelines, e.g., proposals to enable names-

pace di�erentiation in the existing service discovery and server au-

thentication methods. Our proposals complement the previously-

proposed DNS ecosystem level solutions [87, 95] and enable the

victim services to actively defend against name collision attacks.

In summary, our key contributions are as follows:

• We generalize the WPAD name collision attack to a new

class of attacks on the broad set of internal network services using

DNS-based service discovery. We perform the �rst measurement

on the exposed services today and characterize their designed func-

tionality and the potential security implications.

• We collect the client implementations for the exposed ser-

vices and systematically analyze their vulnerability status under

name collision attacks leveraging a dynamic analysis framework.

Our results show that nearly all the exposed services have popu-

lar clients vulnerable due to several common design choices. This

suggests that the name collision attack threatmodel broadly breaks

common security assumptions made in the service clients today.

• Based on the analysis results, we construct exploits and re-

port our �ndings of a myriad of new name collision attacks with

severe security implications, including MitM attack, malicious li-

brary injection, credential theft, etc. These �ndings show high end-

to-end exploitability of identi�ed vulnerabilities in practice.

• We identify several fundamental vulnerability causes, in-

cluding a cause newly introduced by the name collision problem,

the lack of namespace di�erentiation. Based on the insights, we

propose a set of service software level solutions, which enables the

victim services to actively defend against name collision attacks.

2 BACKGROUND

2.1 The Name Collision Problem
In DNS, a domain name is a set of dot-separated labels that form

a tree structure with the DNS root located at the top. The last two

labels, for example .com and example in www.example.com, are

called the TLD (top-level domain) and SLD (second-level domain).

In the DNS ecosystem, the public DNS namespace is for the resolu-

tion of domain names on the public Internet, and the Internet Cor-

poration for Assigned Names and Numbers (ICANN) is the author-

itative administrator for its DNS root. ICANN delegates the man-

agement of the TLDs to speci�c TLD registry operators. Outside of

the public DNS namespace, a local area network can also setup an

internal DNS namespace using private domain names. This is com-

mon practice for corporatenetworks to control internal data access

and resolution. In an internal namespace, the network administra-

tors provision internal DNS zones and con�gure their internal re-

solvers to query these servers instead of the public namespace. To

prevent confusion between internal and public namespaces, the ad-

ministrators usually use TLD strings that have not been delegated

in the public namespace as the internal TLDs (iTLDs).

In late 2013, ICANN launched the New gTLD Program [83],

which has delegated more than 1,000 new gTLDs in three years,

making it the largest expansion of the public namespace ever. As a

side e�ect, many popular iTLD strings were also delegated. Thus,

the internal domain names using previously undelegated iTLD

strings can now be registered in the public namespace. Meanwhile,

it has long been known that internal namespace queries are leaked

to the public namespace every day [87, 100, 102]. Previously, leaked

queries would not resolve in the public namespace as the iTLD

was not delegated. However, with the expanded public namespace,

these leaked queries can now be answered bymalicious registrants

owning the colliding domains in the public namespace. Such reso-

lution of a domain name in an unintended namespace is known as

the name collision problem [44, 87, 102]. By exploiting these query

leaks, this problem has become an attack vector.

2

Session D5: Network Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

942

An exploit instance: the WPAD name collision attack.

WPAD is a protocol designed for end devices to automatically con-

�gure web proxies. It is primarily used in internal networks where

clients are restricted from communicating to the public Internet.

The proxy con�guration process uses a special DNS query, which

prepends the label wpad to the internal domain name. If the query

resolves, the client device retrieves and applies the proxy con�gu-

ration provided by the server. Due to the sensitive nature of this

protocol, all WPAD queries should never leave the internal net-

work. However, as characterized by previous work [87, 102], mil-

lions ofWPAD queries are observed in the public namespace every

day. Due to the name collision problem, malicious registrants can

register vulnerable domains with WPAD queries leaks, and web

tra�c of Internet users from all over the world can be automati-

cally redirected to the attacker’s MitM proxy. Chen et al. recently

characterized the severity and vulnerability status of this attack,

and demonstrated a real threat to users [87].

2.2 DNS-based Service Discovery
The WPAD proxy con�guration belongs to a general class of

DNS-based service discovery processes that utilize named and

structured DNS records to facilitate service discovery in a dis-

covery domain. The traditional approach for the discovery issues

A or AAAA DNS queries with the service name prepended to

the discovery domain. A more advanced approach is to use SRV

records [1]. To discover service svc over transport protocol prot

(e.g., TCP or UDP) in domain comp.ntld, the SRV query format

is _svc._prot.comp.ntld. From the response, the client obtains

the server’s domain name and the port number. Subsequent A or

AAAA queries are then issued to obtain the server’s IP address.

This DNS-based discovery process is formally de�ned in RFC

6763 [27], named the DNS-based Service Discovery or DNS-SD. In

the discovery process, a DNS PTR query is �rst issued to retrieve

a list of available service instance names. For each instance name,

an SRV query is then issued to locate the server name and port.

Like the traditional SRV-based discovery process, the PTR and

SRV queries in DNS-SD all use the format _svc._prot.comp.ntld.

DNS-SD is compatible with both unicast DNS and multicast DNS

(mDNS) [88]. When used with mDNS, DNS-SD can provide Zero-

conf [82], which can discover services on nearby devices in local

link without setting up unicast DNS servers. A popular Zeroconf

implementation is the Apple Bonjour [14], which is built-in with

the latest macOS [15].

This paper considers the general concept of DNS-based service

discovery including both the standard DNS-SD procedure and the

traditional approach. For the query format, we refer to the queries

in the form of _svc._prot.comp.ntld as standard queries and

others as non-standard queries. To standardize the discovery pro-

cess, the o�cial use of certain service names are registered in the

Internet Assigned Numbers Authority (IANA) service name reg-

istry [41]. In this paper, we refer to the service names in the IANA

registry registered names and others as non-registered names.

2.3 Server Authentication Mechanisms
To prevent connecting to an unintended server, the service client

can perform server authentication to validate the server identity

before performing the designed service functionality. When TLS

is used, the client can use the server’s TLS certi�cate to certify the

server’s ownership of the requested name subject, e.g., the domain

name. In the validation process, the certi�cate chain is inspected to

check if the certi�cate is issued by a trusted certi�cation authority

(CA). For the public Internet, a set of trusted third-party CAs are

pre-installed in popularOSes or browsers. For an internal network,

the network administrators typically use self-signed local CAs [16],

which are installed into the end user systems beforehand.

Another popular authentication approach is to use a PSK dis-

tributed to the client and the server. PSK-based authentication

methods can be used for client authentication only, for example by

sending the key in plain text or hashed format to the server. Some

methods can provide both client and server authentications called

mutual authentication, e.g., Kerberos [47] and DIGEST-MD5 [80].

In this paper, we perform a systematic vulnerability analysis to un-

derstand whether the clients with server authentication support

are robust enough under the name collision threat model.

3 CLIENT-SIDE NAME COLLISION
VULNERABILITY

In this section, we describe a generalized name collision attack

threat model and the vulnerability de�nition.

3.1 Threat Model
As covered in §2, internal DNS namespace queries are observed

to be leaked into the public namespace. Among them, as we later

characterize in §4, are a broad set of internal DNS-based service

discovery queries. With the vast expansion of the public names-

pace via the New gTLD Program, many iTLDs are now delegated

and these leaked service discovery, intended only for a internal ad-

ministrative domain, are now resolvable in the public namespace.

In this paper, we consider the attacker to control delegated new

gTLD domains with internal query leaks, or name collision do-

mains, and providemalicious responses to exploit these leaks. Such

attacker may be (1) sophisticated registrants who become aware

of name collision domains by analyzing local DNS tra�c or DNS

tra�c fromOSINT (open-source intelligence) sources such as DNS-

OARC [76], (2) registrants not speci�cally targeting name collision

attacks at the domain registration time, but realize and start ex-

ploitation after observing the leaked queries, or (3) miscreants who

compromise the DNS servers of the name collision domains, e.g.,

leveraging software vulnerabilities, to perform exploitation.

Fig. 1 illustrates the concept of a generalized name collision at-

tack. Due to the name collision problem, the leaked service discov-

ery queries from a victim service client �rst reach the attacker’s

DNS servers. Based on the service name speci�ed in the queries

(§2.2), the attacker’s DNS server points the client to an attacker-

controlled server for the service in request. In this step, the at-

tacker controls the domain and thus can provide authoritative re-

sponses signed by publicly valid Domain Name System Security

Extensions (DNSSEC) keys. Such discovery process may involve

multiple rounds of DNS queries depending on the usage scenario

of the service protocol, which is characterized later in §5.

After the service discovery step, the service client initiates a

connection to the attack server. In this step, the client mistakenly

accepts the identity of the attack server and proceeds with the

3

Session D5: Network Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

943

Victim device using a

name collision domain

comp.ntld

Attacker-controlled

authoritative DNS

server

Attack server for the

service svc

Publicly valid

DNSSEC keys

Publicly valid

TLS certificates

The public DNS namespace

Figure 1: The generalized name collision attack threat

model.

intended service functionality. Since the intended server is typi-

cally located in an internal network, we do not assume the attacker

is capable of relaying the client requests to the intended internal

server and perform MitM attacks. Instead, the attacker’s goal is

to only leverage the server position to induce security breaches.

Even though the attacker is not performing a MitM attack on the

sevice discovery process, the attacker may still be able to exploit

the server position to ultimately perform aMitM attack on the end

device as demonstrated by the WPAD name collision attack [87].

To perform the attack, we assume that the attacker can use any

resource available in the public namespace. An important exam-

ple of such resource is a valid TLS certi�cate for the attack server,

which can be obtained freely in a few minutes from authorities

such as Let’s Encrypt [49]. Compared to the threat model in the

WPAD name collision attack, which only considers one service dis-

covery usage scenario with no modern server authentication com-

ponents, the threat model here considers a more general form of a

name collision attack that applies to a much broader set of internal

network services using DNS-based service discovery.

Compared to previous attacks on internal network services,

which typically have tight requirements of both the attack place-

ment and timing, name collision attacks are much more severe due

to several unique properties. The �rst is the ease in which they can

be launched. Internal network attacks typically require an attack

device in the victim’s internal network, but name collision attacks

only require the registration of certain vulnerable domains. Sec-

ond, they are of larger scale in terms of victim sources. Compared

to the limited internal scope of internal network attacks, name col-

lision attacks a�ect all leaked queries within the same colliding do-

main from potential victims all over the world. Third, they are also

more powerful, since the attacker can use a number of valid iden-

tities in the public namespace, e.g., DNSSEC keys and TLS certi�-

cates, that are typically not available for internal network attackers.

This class of attacks is also stealthy, since after the domain registra-

tion, it is di�cult for third parties to further check the subdomains

for attack attempts due to privacy consideration [93].

3.2 Vulnerability De�nition
Under the threat model above, we de�ne a vulnerable internal net-

work service with two properties:

(1) Service query exposure. For a service software to be vul-

nerable, it needs to (1) use DNS-based service discovery, and (2)

have the discovery queries being leaked to the public namespace.

In §4, we use the leaked query tra�c collected at the DNS root

servers to measure the services with query leaks, which we call

are exposed to the name collision problem. In this paper, the query

leakage volumes are used to quantify the degree of such exposure.

(2) Client-side name collision vulnerability. With service

query exposure, the service client software needs to have vulnera-

ble design or implementations that accept the identity of the attack

server from the discovery. In this paper, if these vulnerable design

or implementations, alone or in combination, cause the client soft-

ware to pass all server authentication logic if implemented, and

reach the execution point of starting the intended service function-

ality with the attack server, we call the client software to have a

client-side name collision vulnerability. Since in our threat model

the attackers cannot access the legitimate internal server to obtain

the right proof of identity, the client should be able to tell the at-

tack server apart. However, our vulnerability analysis results indi-

cate that the server authentication logic in today’s service clients

is generally not robust enough to correctly handle name collision

attacks. Later in §5, we detail the analysis results and �ndings.

4 EXPOSED SERVICE CHARACTERIZATION
In this section, we measure the exposed internal network services

(de�ned in §3.2), and characterize their functionality.

4.1 Methodology
Leaked query dataset. We perform the leaked DNS query mea-

surement using query tra�c collected at DNS root servers in the

DNS-OARC Day In The Life of the Internet (DITL) project [5]. The

DITL project has collected DNS tra�c from participating DNS root

servers for 48 hours annually since 2006, which delivers the largest

scale simultaneous DNS tra�c collection from the global DNS in-

frastructure [86]. Considering that the dataset has multi-year col-

lections but each collection is limited to two days, our analysis is

performed at the granularity of days and aims at identifying the

most frequently requested services observed during the collection.

Our analysis uses the 2011 to 2016 query tra�c data, which are

collected at 10 to 11 out of the total 13 root servers each year. To es-

timate the total global leakage volume to all root servers, the query

volumes in our results are calibrated by multiplying the average

volumes per root server by 13.

Before the delegation of a new gTLD, the leaked internal service

queries are answered by the DNS root servers as non-existent do-

mains, or NXD [99]. Thus, from the DNS root tra�c, we form the

leaked query dataset by extracting queries with (1) NXD responses,

and (2) TLD strings that have been delegated in the New gTLD Pro-

gram today. In this paper, we consider the delegated new gTLDs

as of March 4, 2017, which include 1,216 new gTLDs in total [84].

Exposed service measurement. To measure the exposed ser-

vices, we extract the service names from the queries in the leaked

query dataset using the service discovery query format (§2.2). In

our study, our main focus is the services o�cially registered in the

IANA registry [41]. These are services that are widely used in in-

dustry, e.g., sip and ldap, and their IANA registration entries have

4

Session D5: Network Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

944

Exposed service Exposed service Potential security
functionality name implications

Proxy/tunnel con�g. wpad① (N), isatap② (N), MitM attack
proxy② (N)

Time con�g. ntp③ Time shifting attack
Software activation vlmcs② (N) DoS
Directory service ns*① (N), alt*① (N), Server spoo�ng,
(help a client locate lb① (N), db① (N), dns-sd①, service info. leakage
a server of the dr① (N), tracker② (N),
requested service) dns-llq⑤, dns-update⑤
Web service www*① (N), api① (N), Web-based phishing

static① (N), cf① (N), attack, malicious script
share① (N), http②, https③ execution

Server con�g. retrieval stun④ Con�g. info. spoo�ng
Multimedia �le access ptp③, dpap④ Phishing attack
Authentication service kerberos① DoS
Coding library retrieval rubygems⑤ Malicious code injection
Database service gc① (N), ldap①, carddav④, Phishing attack,
(organization data, ldaps④, caldav④, caldavs④, organization data
calendar, contacts, etc.) carddavs④ leakage

Exposed service Exposed service Potential security
functionality name implications

Remote access to afs3-vlserver④, adisk④, Phishing attack,
computers/�le systems smb④, afpovertcp④, ftp④, info. leakage

sftp-ssh④, rfb④, webdav⑤,
odisk⑤, eppc⑤, telnet⑤

System kpasswd②, airport③, System con�g. info
management servermgr⑤ leakage
Mail autodiscover① (N), Email spoo�ng, phishing

outlook① (N), mail*① (N),
pop3②, smtp②

VoIP sipinternaltls① (N), sip① Call spoo�ng, phishing
sipinternal① (N),
sipexternal① (N), sips③

Messaging xmpp-server③, xmpp-client③ Msg. spoo�ng, phishing
Printer printer③, pdl-datastream③, Internal/personal

riousbprint③, ipp③ document leakage
Scanner/camera scanner③, ica-networking⑤ Phishing attack
Distributed computing xgrid④ Malicious code execution
System monitoring syslog⑤ Organization info. leakage

Table 1: Functionality characterization of the exposed internal network services and the potential security implications. Cir-

cled numbers are the ranges of the average daily query leak volumes: ① > 100,000, ② 10,000 – 100,000, ③ 1,000 – 10,000, ④ 100

– 1,000, ⑤ 10 – 100. N denotes non-registered service. Documentations for individual services are in Table 6 in Appendix.

service information such as protocol description, which are critical

for us to understand and characterize their functionality.

To measure the registered services, we calculate the average

daily query leak volume for each service in the IANA registry. One

problem is that our measurements are impacted starting late 2013

as many of the new gTLDs began delegation and our observation

space of the leaks decreases. To solve it, we obtain the delegation

dates for the targeted new gTLDs and compute the per-TLD daily

query leak volumes for each service, only using the data collected

before each new gTLD’s delegation date. Then, the average leak

volume for a service is the sum of its per-TLD leak volumes.

In this paper, we also study the non-registered services, some

of which are also popular, e.g., the WPAD service. However, com-

pared to registered services they are signi�cantly more challeng-

ing to study due to the lack of readily available documentation as

they are typically proprietary. It is especially di�cult to identify

services with non-standard queries, since all the �rst labels in the

queried domain names are considered as candidate service names.

To overcome this challenge, we use an automated script to conser-

vatively rule out service name candidates without su�cient infor-

mation for our study. Details are in Appendix §A.

4.2 Exposed Services
From our measurement, 115 registered services in the IANA reg-

istry are found to have service query exposure. The leakage vol-

ume distribution exhibits a long tail property with 40.9% (47) of

the services receiving less than �ve queries globally per day. To

focus our analysis on the ones with considerable degrees of query

exposure, we pick the top 50 services for subsequent analysis.

For the non-registered services, since the query formats are

loosely de�ned, the output of our measurement includes 78.5 mil-

lion candidate strings. With the help of the automatic script (§4.1),

we choose 30 service names with top popularity for subsequent

analysis. More details are in Appendix §A.

In total, we form an exposed service dataset of 80 services with

highest levels of service query exposure today. Table 1 character-

izes 68 of them according to their designed functionality and po-

tential security implications under name collision attacks. Table 6

in Appendix includes the documentations we collected for each of

them. For the remaining 12, we are unable to further analyze them

since they either have no online documentation or no precise ser-

vice information (details in Table 4 in Appendix). In Table 1, the

average daily query leak volumes are presented as circled numbers

① to ⑤ indicating �ve volume ranges. For non-registered service

names, strings that only di�er in the su�x numbers, e.g., www1 and

www2, are aggregated into names ending with “*”, e.g., www*.

As shown in Table 1, in addition to the previously-studied

WPAD service [87], the name collision problem actually a�ects a

wide spectrum of internal network services with diverse function-

ality today. More importantly, many of these exposed services are

critical for security and privacy, e.g., proxy con�guration, coding

library discovery, printer discovery, etc. As shown in Table 1, if the

service software has client-side name collision vulnerabilities, at-

tackers may cause a wide range of security problems. In the next

section, we collect the service implementations to concretely eval-

uate their robustness under the name collision attack threat model.

5 VULNERABILITY ANALYSIS
To evaluate the robustness of the exposed services under name col-

lision attacks, in this section we perform vulnerability analysis on

the service client implementations and analyze the causes.

5.1 Methodology
Service client implementation collection. For each exposed

service, the goal is to collect its client implementations that are

generating the leaked service discovery queries observed in our

measurement. Based on the service names and registration infor-

mation, we read over ten pages of Google search results, down-

load and test candidate software. We only pick a candidate if it is

manually con�rmed to (1) use DNS-based service discovery, and

(2) automatically combine the service name and a discovery do-

main to form the discovery query. The discovery domain con�gu-

ration processes depend on the client implementation details. For

the clients we have explored, they typically use the OS domain or

the user account domain. For services with multiple client imple-

mentations, our analysis mainly focuses on the ones that are more

5

Session D5: Network Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

945

Exposed service Client implementation Usage Vulnerable design or imp. choice Vulnerable?
V1 V2 V3 V4

ldap In-domain Windows 10 logon, o�cial Linux command ldapsearch U1 ✗ N/A N/A ✓ ✓

IPA Client logon U1 ✗ N/A N/A ✗ ✗

wpad Windows 10 WPAD service U1 ✓ N/A N/A N/A ✓

isatap Windows 10 ISATAP tunnel service U1 ✓ N/A N/A N/A ✓

kerberos In-domain Windows 10 logon, IPA client logon U1 ✗ N/A N/A ✗ ✗

dns-sd, lb, db, dr macOS 10.12 domain enumeration U1 ✓ N/A N/A N/A ✓

sip, sipinternaltls Skype for Business 2016 U1 ✗ ✓ N/A ✓ ✓

sipinternal, sipexternal X-Lite, Blink, Phoner, Linphone, Jisti U1 ✓ N/A N/A ✓ ✓

gc In-domain Windows 10 DSQUERY commands U1 ✗ N/A N/A ✓ ✓

mail Outlook 2016 IMAP service U1 ✗ ✓ N/A ✓ ✓

autodiscover, outlook Outlook 2016 Autodiscover service U1 ✗ ✓ N/A ✓ ✓

kpassword Kerberos for Windows U1 ✗ N/A N/A ✗ ✗

pop3 Outlook 2016 POP service U1 ✗ ✓ N/A ✓ ✓

smtp Outlook 2016 SMTP service U1 ✗ ✓ N/A ✓ ✓

sips X-Lite, Blink, Phoner, Linphone U1 ✗ ✓ N/A ✓ ✓

Jisti U1 ✗ ✗ N/A ✓ Depend on user
printer macOS 10.12 printer discovery U2 ✓ N/A ✓ (qry & rsp) N/A ✓

pdl-datastream macOS 10.12 printer discovery U2 ✓ N/A ✓ (qry & rsp) N/A ✓

xmpp-server ejabberd U1 ✓ N/A N/A N/A ✓

riousbprint macOS 10.12 printer discovery U2 ✓ N/A ✓ (qry & rsp) N/A ✓

ntp IPA Client logon U1 ✓ N/A N/A N/A ✓

ipp macOS 10.12 printer discovery U2 ✓ N/A ✓ (qry & rsp) N/A ✓

xmpp-client PSI logon, Adium logon U1 ✗ ✓ N/A ✓ ✓

http macOS 10.12 Safari Bonjour browser U2 ✓ N/A ✓ (qry) N/A ✓

stun X-Lite, Blink U1 ✓ N/A N/A N/A ✓

afs3-server IBM OpenAFS U1 ✗ N/A N/A ✗ ✗

carddav iOS 10.3 Contacts CardDAV account U1 ✗ N/A N/A ✓ ✓

adisk macOS 10.12 Time Machine disk discovery U2 ✗ N/A ✓ (qry & rsp) ✓ ✓

afpovertcp The Shared section in macOS 10.12 Finder U2 ✗ N/A ✓ (qry) ✓ ✓

smb The Shared section in macOS 10.12 Finder U2 ✗ N/A ✓ (qry) ✓ ✓

rfb The Shared section in macOS 10.12 Finder U2 ✗ N/A ✓ (qry) ✓ ✓

ssh The New Remote Connection in macOS 10.12 Terminal U2 ✗ N/A ✓ (qry & rsp) ✓ ✓

caldav iOS 10.3 Calendar CalDAV account U1 ✗ N/A N/A ✓ ✓

dpap macOS iPhoto photo sharing U2 ✓ N/A ✓ (qry & rsp) ✓ ✓

ftp The New Remote Connection in macOS 10.12 Terminal U2 ✗ N/A ✓ (qry & rsp) ✓ ✓

sftp-ssh The New Remote Connection in macOS 10.12 Terminal U2 ✗ N/A ✓ (qry & rsp) ✓ ✓

carddavs macOS 10.12 Contacts CardDAV, iOS 10.3 Contacts CardDAV U1 ✗ ✓ N/A ✓ ✓

webdav Cyberduck discovery U2 ✗ N/A ✓ (qry) ✓ ✓

dns-llq macOS 10.12 Back To My Mac service U1 ✓ N/A N/A N/A ✓

severmgr macOS Server 5.1 discovery U2 ✗ ✓ ✓ (qry & rsp) ✓ ✓

dns-update macOS 10.12 dynamic global hostname service U1 ✓ N/A N/A ✓ ✓

telnet The New Remote Connection in macOS terminal U2 ✗ N/A ✓ (qry & rsp) ✓ ✓

rubygems RubyGems gem and bundle commands U1 ✓ N/A N/A N/A ✓

caldavs macOS 10.12 Calendar CalDAV, iOS 10.3 Calendar CalDAV U1 ✗ ✓ N/A ✓ ✓

Table 2: Vulnerability analysis results for the collected client implementations of the exposed services.

popular among corporate or end users and thus has higher impact.

We focus our analysis on the most recent releases available to us

so that our analysis results are current and relevant.

Column one and two in Table 2 list the services and the col-

lected client implementations. This collection includes 57 client

implementations covering 48 (70.6%) out of the 68 services with

service design information in our exposed service dataset. We pri-

oritize our e�orts to cover the registered services with the highest

level of exposure. Speci�cally, our collection covers 14 out of the

17 registered services with over 1,000 daily query leaks in Table 1.

For the remaining ones, we were unable to obtain valid software

for our study (details in Table 5 in the Appendix).

Many services are registered for a single product, e.g., gc and

outlook. Thus, most of the services in the table only have one

client listed. Also, the list of clients has a skew towards a particular

vendor’s products because that vendor is the major supporter for

DNS-SD and has registered many of them for their own use, e.g.,

adisk, afpovertcp, dpap, etc. [41]

Analysis steps.Due to service functionality or usagemodel dif-

ferences, these service clients may need to contact multiple servers

for di�erent purposes and ultimately result in di�erent levels of

vulnerability exposure in name collision attacks. Thus, to systemat-

ically analyze the client-side name collision vulnerability, we �rst

perform a characterization of the service discovery usage scenar-

ios implemented in the collected clients. In this analysis, we �rst

con�gure the client and server software, and ensure the service

functionality is performed as expected. We then trigger the ser-

vice discovery in the client, and analyze the network tra�c to un-

derstand the usage.

Based on the usage characterization results, we identify the at-

tack points for each usage scenario and perform vulnerability anal-

ysis for a client at every attack point. Our analysis uses a simulated

name collision attack environment and dynamically analyses the

vulnerability status. The victim client software is installed in the

same computer being connected to two namespaces, simulating an

internal DNS namespace and the public DNS namespace in which

name collisions can occur. Our analysis assumes the absence of

the attacker at the �rst-time software usage. Thus, we �rst trig-

ger the designed functionality without attack in the simulated in-

ternal DNS namespace. After that, we disconnect the client from

6

Session D5: Network Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

946

all legitimate internal servers and switch to the simulated public

namespace to start the vulnerability analysis. For the client-side

requests at each attack point, we construct possible attack server

responses only using resources available in the public namespace.

Note that since we do not assume the attacker can access the le-

gitimate internal servers (§3.1), the attack and legitimate servers

are con�gured di�erently in the non-default settings, e.g., server

names, zone �le content, user credentials, etc. Using this analysis

method, a client-side name collision vulnerability is revealed if the

client accepts the attack server responses at all attack points of its

usage scenario. Since this method identi�es vulnerabilities by di-

rectly testing attacks, it does not have false positives, but can have

false negatives since it may not explore all vulnerable paths in the

software, which is an inherent limitation for dynamic analysis [73].

Analysis framework. We develop a dynamic analysis frame-

work to support the analysis tasks above. The victim client soft-

ware is installed in a virtual machine con�gured in two network en-

vironments, each having its own DNS server but using a local zone

�le with the same domain name. To conform to our threat model,

we registered a real new gTLD domain to set up the name collision

domain. During the vulnerability analysis, we switch the network

environment by changing the client DNS resolver address and shut-

ting down all server virtual machines in the previous network envi-

ronment. In this framework, the tra�c between the client and the

server are intercepted by a MitM proxy for the protocol analysis

on TLS tra�c and the attack server response injection. We develop

this proxy by customizing the SSLSplit tool [72].

For the services using TLS, the servers in the simulated internal

namespace are con�guredwith certi�cates signed by a local CA. To

simulate the public namespace, we obtain valid public certi�cates

for the attack servers for free through the Let’s Encrypt CA [49].

After obtaining the certi�cates, we con�gure our DNS servers to

only serve the IP addresses we control.

Note that currently most parts of this analysis are manual. We

made this decision because generally automating the analysis, e.g.,

identifying, con�guring, and triggering a targeted behavior for ar-

bitrary software, is very challenging. The diversity in platforms

and software design further complicates the task. Despite the man-

ual e�ort, our analysis covers a relatively complete range of ser-

vices so the analysis results, our main contribution, are not signi�-

cantly a�ected. The e�orts made in this work also helps shed light

on how to automate the analysis in the future.

5.2 Service Discovery Usage Scenarios
Our analysis identi�ed two usage scenarios:

U1. Locate a single server in the discovery domain. In our

collection, the clients for 33 of the 48 exposed services are in this

usage scenario. As shown on the left of Fig. 2, these clients use the

traditional service discovery methods via SRV or A/AAAA queries

as introduced in §2.2. In U1, the client contacts two attacker-

controlled servers, the DNS server for comp.ntld and the server

for the requested service svc. In the �gure, they are labeled as AP2

and AP3, denoting the two attack points in name collision attacks.

U2. Locate multiple servers in both local link and the uni-

cast discovery domain. The remaining 16 clients, covering 15 of

the 48 exposed services, use DNS-based service discovery to �nd

a list of services instead of a single one. These clients uses PTR

...

Inst2

Inst1

Devices in

local link

Service svc

functionality request

Server for

service svc
Service svc

functionality request

Service

client of U1

Service

client of U2

DNS server for

comp.ntld

Attack

point 2

(AP2)

Attack

point 3

(AP3)

Attack

point 1

(AP1)

Figure 2: Illustration of usage scenario U1 and U2 of DNS-

based service discovery (§5.2) in our service client collection.

queries to retrieve a list of server names for the user to choose as

shown on the right of Fig. 2, which conforms to the Zeroconf usage

of the DNS-SD standard [82]. Even though Zeroconf is mostly de-

signed for discovering nearby devices without unicast DNS server

support [14], these clients have unicast query leaks mainly due

to their support of discovering both the local link via mDNS and

the discovery domain via unicast DNS. Compared to U1, clients

in U2 have an additional user selection step. Thus, to increase the

attack success rate, the attacker needs to spend extra e�ort to care-

fully craft PTR responses to trick the user into choosing the attack

server in the list, which is labeled as AP1 in Fig. 2.

5.3 Vulnerability Analysis
Using the analysis framework, 57 clients in 45 (93.8%) of the 48

exposed services are found to be vulnerable. In this section, we re-

port four common vulnerable software design or implementation

choices causing such widespread vulnerability exposure. The anal-

ysis results are summarized in Table 2.

V1. Lack of server authentication by default. At AP1 and

AP2, even though the attack zone �le setup and the DNS response

content are di�erent from the legitimate one, we �nd that all 57

clients accept the malicious DNS responses after switching names-

paces. This is not entirely surprising: DNS clients solely rely on

their recursive resolvers to locate the appropriate DNS servers, and

thus are are not in the position to di�erentiate namespaces.

Even thoughname collision attackers can pass AP1 and AP2, the

57 clients have the full potential to block the attack at AP3, where

various server authentication methods can be used. However, to

our surprise, we �nd that the clients for 16 (33.3%) out of these

48 exposed services do not implement any server authentication

method by default for the server(s) from discovery. It includes four

printing service software, seven communication service software,

7

Session D5: Network Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

947

tunneling services isatap, etc. As shown in Table 1, the potential

security implications for these services are high severe, including

MitM attacks, malicious script execution, document leakage, etc.

This lack of server authentication is not entirely poor implemen-

tation choices. Services such as wpad, isatap, stun, etc., have no

server authentication speci�ed in their protocol design [46, 68, 91].

Also for services such as sip and ftp, server authentication is men-

tioned but the implementation is not enforced [34, 66]. Thus, to

solve this problem, both the service design documentation and the

actual implementations need to be strengthened.

V2. Accept a publicly-valid but previously-unseen TLS

certi�cate by default. In our client collection, 36 clients for two

thirds (32) of the 48 exposed services do use server authentication

in AP3. Seventeen of them use TLS certi�cates, and when we �rst

trigger the service functionality in the simulated internal names-

pace, all of them require explicit user addition or approval steps to

trust the legitimate internal server certi�cates signed by the local

CA. However, after switching to the simulated public namespace,

we �nd that 16 of the 17 clients by default accept the publicly-valid

but previously-unseen TLS certi�cate we prepared for the attack

server. As shown in Table 2, they involve highly popular clients for

VoIP, mail, contacts, and calendar. The only client that does not ac-

cept the attack certi�cate by default is sips software Jisti, which

requires user approval for any certi�cate that was not previously

seen. However, it still relies on the user to make the correct secu-

rity decision instead of directly terminating the connection.

Since in our experiments the connection to the intended server

in the internal network is established �rst, these clients should be

capable of distinguishing the attack certi�cate from the legitimate

one, e.g., they are not signed by the same CA. Unfortunately, they

make the choice of accepting any previously-unseen publicly-valid

certi�cate by default. This may be because they are not designed

to be only used in the internal network. For example, for the SIP

and XMPP clients, the targeted use cases are not only for the in-

ternal servers but also for the public ones such as sip2sip and

xmpp.jp. Thus, to increase the convenience in the latter use cases

their trusted CA lists by default include the public CAs.

Note that this is not a weakness in TLS-based server authentica-

tion. The server authentication in TLS is only designed for validat-

ing the certi�cate chain for a given domain name, and in this case,

the certi�cate chains are indeed valid in both internal and public

networks. The fundamental cause is in the use of TLS-based server

authentication in these service clients: they are designed to be used

in both internal and public namespaces but lacks the awareness of

di�erentiating the use in di�erent namespaces. Later in §5.4, we

have more discussions on this problem cause.

V3. Mix local-link and unicast DNS domain discovery. As

discussed in §5.2, clients in U2 are mainly designed to discover

servers at nearby devices in the local link using mDNS queries [14]

and thus should not be exposed to the name collision problem.

However, to extend such discovery to wider areas beyond a lo-

cal link, e.g., large corporate networks with multiple subnetworks,

these clients also browse a con�gured discovery domain using uni-

cast DNS queries. Unfortunately, such extended functionality sup-

port causes the 16 clients in U2 to have mixed queries to both local

link and the unicast DNS domain, causing service query exposure.

In fact, we �nd that for many Zeroconf software with unicast

DNS discovery, such extended functionality is actually not always

necessary. Two examples are the macOS Parental Control func-

tion, which implements the registered service parentcontrol, and

the Docs To Go software, which implements the registered service

dxtgsync. The macOS Parental Control is designed for parents to

monitor and manage their children’s Mac computers, and Docs To

Go is used for a single user to synchronize documents on various

personal devices under the same WiFi. They are mainly designed

for accessing nearby devices in local link without a local unicast

DNS server setup, but they by default generates unicast DNS dis-

covery queries along with the mDNS queries. Another example

is application DropCopy that implements the registered service

dropcopy. It is designed to transfer �les among nearby devices

similar to Docs To Go. It uses unicast DNS discovery but does not

show the results in the server list, making it more obvious that the

unicast DNS discovery functionality is actually not needed.

To understand why these software implementations choose to

support the redundant unicast DNS discovery, we take a close look

at the most popular Zeroconf framework, Bonjour, and �nd that

this is potentially caused by the default behavior of the discovery

API. We analyze the API according to the documentation [13], and

�nd that if the domain parameter is not speci�ed, the discovery

API by default discovers both the local link using mDNS and the

system-con�gured domain using unicast DNS. Thus, if the devel-

oper is not careful enough, such default API behavior with mixed

local-link and unicast domain discovery unnecessarily causes the

software to be exposed to name collision attacks.

Besides the queries, the mixing of local-link and unicast domain

discovery also happens to the discovery results in the responses.

Among the 16 implementations in U2, 11 of them do not di�erenti-

ate the servers from local-link discovery and those from unicast

domain discovery in the user selection step. These implementa-

tions are all in macOS system applications, including the printer

discovery process and the system terminal’s remote shell function-

ality. As illustrated in Fig. 2, only the service instance name strings,

e.g., “inst1” if the response is inst1._svc._prot.comp.ntld, are

shown to the user without any indicator of the discovery domain.

This makes it impossible for even a security-savvy user to tell the

associated discovery domain for the discovered servers, allowing

name collision attackers to have arbitrary control over the con-

tent shown on the user interface and thus more easily in�uence

the user choice. Later in §6, we use concrete examples to illustrate

how this can be exploited to directly prevent the user from choos-

ing the legitimate server. For the other �ve clients, the discovered

servers in the list are labeled with the namespaces, e.g., “local” for

local link and “comp.ntld” for discovery domain comp.ntld. Actu-

ally among them there are some macOS system applications, e.g.,

Finder and Safari Bonjour browser, but unfortunately this practice

is not consistently enforced throughout the system.

V4. No enforcement of server authentication in PSK-

based authentication. Besides using TLS certi�cates, PSK can

also be used to provide server authentication at AP3. Since the pass-

word is only shared with the intended internal server, the client

can detect a name collision attack server since the attacker can-

not prove the possession of the correct password. In our collection,

8

Session D5: Network Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

948

42 clients for 33 services use PSK-based authentication by default.

However, we �nd that 37 clients for 30 (90.9%) out of these 33 ser-

vices have no enforcement of server authentication. Nineteen of

them only use the PSK for client authentication without requiring

server authentication by default. For some, the user name and pass-

word are even sent in plain text to the attack server. This not only

fails to detect the attack server but also leads to credential theft.

The remaining 18 clients choose to use mutual authentication

methods such as Kerberos or DIGEST-MD5 by default. However,

they are still found vulnerable since they can all be downgraded

to not use mutual authentication if the attack server suggests so,

without even notifying the user that the current authentication is

less secure. For XMPP implementations PSI and Adium, the Card-

DAV, CalDAV, and WebDAV implementations including macOS

and iOS Contacts and Calendars, HTTP Authentication is used

with DIGEST-MD5 by default, but these clients can all be down-

graded to use Basic, which sends the Base64 encoded password.

We �nd that without TLS being enabled, PSI and Adium actually

refuse to use Basic by default. We suspect that they choose to ac-

cept the weaker authentication method under TLS mainly because

they assume that the server has already been authenticated after it

passes the TLS certi�cate validation. Unfortunately, according to

our analysis results for V2, this assumption is generally broken for

the collected clients using TLS, including PSI and Adium.

The ldap implementation used during Windows 10 logon, the

SIP client Microsoft Skype for Business 2016, the mail client Out-

look 2016, and the macOS Finder implementation of smb all by

default use Kerberos. However, they can be downgraded to using

NTLM, which does not provide server authentication [21]. For an-

other ldap client, the o�cial Linux LDAP command ldapsearch,

when the PSK-based authentication method is not explicitly speci-

�ed, the program by default accepts the server suggestion of using

NTLM. The disk discovery implementations in macOS Finder and

Time Machine, which implement afpovertcp and adisk respec-

tively, both use the AFP (Apple Filing Protocol) [6] and by default

use Kerberos. However, it can be downgraded to use DHX2 (Di�e-

Hellman Key Exchange 2) that is clearly explained in the documen-

tation that “there is no way for the client to verify that the server

knows the password” [3].

Among the 57 clients, only six do not exhibit the client-side

name collision vulnerability in our analysis. Besides the SIP imple-

mentation Jisti that depends on the user to make the right decision,

the other �ve are not vulnerable since they only support Kerberos.

5.4 Discussion
As shown above, nearly all (51) of the 57 service clients we col-

lected are vulnerable to name collision attacks, suggesting that the

name collision attack threat model broadly breaks common secu-

rity assumptions made in today’s internal network service clients.

From the analysis, we observe two fundamental causes at the soft-

ware design level. First, internal service clients today tend to place

excessive trust on the server side. As shown, clients for one third

of the 48 exposed services do not use any server authentication by

default. For clients using PSK-based authentication, around 90% of

them have no enforcement of server authentication. This is proba-

bly because by design these clients are expected to be used in inter-

nal networks, e.g., in companies, which have network isolation and

certain levels of security protections, and thus make the security

assumption that the servers are trusted. Such assumption is broken

under the threat model of local network attacks, e.g., ARP spoo�ng

attacks, but it may be deceptively safe considering that these at-

tacks usually have tight requirements of the attack placement and

timing. However, with internal query leaks exposing these service

clients to malicious servers in the public network, the name colli-

sion attack threat model is thus a new attack vector to break such

assumption, and as discussed in §3.1, it is more powerful and easier

to launch than typical local network attacks.

Second, the service clients today using DNS-based service dis-

covery generally lack the awareness of di�erentiating the names-

paces of the domain names in the DNS responses. In this paper,

we call it a lack of namespace di�erentiation. As shown, in service

discovery, 11 of the 16 clients in U2 do not di�erentiate the re-

sponses from the local-link namespace (.local) and the unicast

domain namespace. For server authentication, 16 out of the 17

clients relying on TLS to authenticate a domain name accept a cer-

ti�cate from the public namespace by default, even though the pre-

viously user-approved certi�cate for such domain name is from an

internal namespace. This is a fundamental problem introduced by

the newly-emerged name collision attack threat model. By design,

DNS namespaces should be isolated and thus internal network ser-

vice clients are not expected to di�erentiate namespaces. However,

since the name collision problem is happening today, such a gen-

eral lack of namespace di�erentiation leaves the service clients in-

capable of handling potential name collisions, causing the vulner-

ability exposure in our analysis.

Based on these insights, in §7 we propose a set of defense strate-

gies at the service client software design level.

6 EXPLOITATION CASE STUDY
To demonstrate the severity of the identi�ed vulnerabilities, we

construct realistic attack scenarios in our analysis framework. Ta-

ble 3 summarizes our results. As shown, a number of new name

collision attacks are uncovered with a wide range of security im-

plications, i.e., a new MitM attack vector in addition to the WPAD

name collision attack [87], document leakage, malicious code injec-

tion, credential theft, and phishing attacks. Note that the newMitM

attack vector exploits an IP tunneling service, and thus besides in-

tercepting web tra�c like the WPAD attack, it can also intercept

DNS tra�c and launch DNS-based exploits such as DNS response

spoo�ng. Due to the space limit, this section only describes the at-

tackswith potentiallymore interesting attack strategies; the others

are in Appendix §B and §C.

6.1 MitM Attack
In the previous work [87], the name collision attack on the Win-

dows implementation of wpad has been found to cause MitM at-

tacks. In this study, we �nd that the Windows implementation of

isatap, a service with completely di�erent design purpose in com-

parison to wpad, can also be exploited by name collision attackers

to launch MitM attacks. In this section, we report the attack con-

struction for the implementation of isatap in Windows 10.

The protocol for isatap service is ISATAP (Intra-Site Automatic

Tunnel Addressing Protocol) [46]. It is an IPv6 transition mecha-

nism to enable a client to use IPv6 in an internal network that only

9

Session D5: Network Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

949

Section Client software Service name Vulnerable design/imp. choice Exploitation

§6.1 Microsoft Windows 10 isatap V1 MitM attack (web tra�c & DNS tra�c)
§6.2 RubyGems 2.6.12 rubygems V1, V2 Malicious code injection
§6.3 macOS 10.12 printer discovery ipp V1, V3 Document leakage
§6.4 PSI 0.15, macOS 10.12 xmpp-client, carddav, V1, V2, V4 Credential theft

and iOS 10.3 Contacts, Calendar carddavs, caldav, caldavs
macOS 10.12 Terminal ftp, ssh, sftp-ssh, telnet V1, V3, V4

Appendix §B Linphone 3.10.2, PSI 0.15 sip, xmpp-client V1, V2, V4 Phishing calls & messages
Appendix §C macOS 10.12 and iOS 10.3 carddav, carddavs V1, V2, V4 Phishing name card &

Contacts, Calendar caldav, caldavs calendar event injection

Table 3: Exploitation case studies for the identi�ed client-side name collision vulnerabilities. V1 to V4 are detailed in §5.3.

has IPv4 network infrastructure. The ISATAP server is connected

to both the internal IPv4 network and an external IPv6 network.

When the client uses IPv6, the tra�c is encapsulated in IPv4 pack-

ets between the client and the ISATAP server, and then decapsu-

lated by the ISATAP server to contact the IPv6 sites on behalf of

the client. This mechanism is implemented primarily in Windows

OSes and also supported in Linux.

Service query exposure. We �rst con�gure a Windows 10

client to log into a Windows domain, which is common practice in

a corporate network [25]. In our simulated name collision attack

environment, we �nd that the ISATAP service is by default enabled

and the service query exposure happens at the OS booting time,

during which the client sends a query by prepending the isatap

label to the Windows domain to discover the ISATAP server.

Exploitation. We set up the attack server by con�guring

the Linux ISATAP router program radvd with IP forwarding en-

abled [51]. Since the client makes vulnerable choice V1, i.e., hav-

ing no server authentication by default, to launch the exploit we

only need to point the client requested query name to our ISATAP

server IP address in the colliding domain zone �le.

In the virtual machine setup, our host machine does not have

a public IPv6 address allocation. This emulates a network without

IPv6 support, which is common in home networks using popular

cable services inmajority of the states in the U.S. [20]. After switch-

ing to the attack environment, after booting theWindows 10 client

is found to have accepted and already con�gured to use the attack

server in the ISATAP tunnel interface. Then, all web tra�c to IPv6

sites are found to be intercepted by our attack server.

In addition, we �nd that as an IP tunneling protocol, ISATAP

can a�ect not only web tra�c like WPAD, but also DNS tra�c.

In our experiments, we �nd that the Windows 10 OS prioritizes

the IPv6 DNS servers when both IPv4 and IPv6 DNS servers are

con�gured. Thus, as long as the DNS con�guration includes one

IPv6 DNS server, for example popular public open resolvers [35],

the ISATAP tunnel is tried �rst for any DNS request. This causes

all DNS queries to be intercepted, leading to another dimension

of exploits leveraging DNS response spoo�ng. In this case, since

the attacker acts as the client’s DNS resolver, she can bypass the

DNSSEC integrity check due to the last mile problem for DNS [75]

and can thus read and modify arbitrary DNS responses.

6.2 Malicious Library Injection

Service rubygems is used in RubyGems, the Ruby packagemanager

serving Ruby coding libraries, called gems. In this section, we detail

a name collision attack on this service to inject malicious libraries.

Service query exposure. To use the service, RubyGems �rst

needs to con�gure the discovery domain, called adding sources.

The sources typically include the o�cial Ruby package server

rubygems.org to discover standard packages, and can also include

internal domains to download libraries developed internally, e.g.,

those for company-wide use only. After switching to the attack

environment in our analysis framework, service queries to both

the o�cial package server and the internal domain are triggered

when installing or updating a gem with the gem commands or the

bundle commands. Since the source con�guration is at the cod-

ing platform level, as long as the user runs these commands on

a computer with the internal source con�gured, e.g., a corporate

computer, the internal domain discovery is always triggered even

if the user’s coding task is unrelated to internal libraries.

Exploitation. We set up the attack server using Gem in a

Box [78]. The attack goal is to let the client install an attacker-

prepared version of a public library that should be served at the o�-

cial Ruby package server. Compared to infecting internal libraries,

preparing malicious public libraries are easier since the API infor-

mation is public, and can potentially infect more parts of a devel-

oper’s program when targeting popular libraries. Also it is more

stealthy since the attacker can carefully insert code so that the API

functionality still appears normal. In RubyGems, we �nd thatwhen

the gem or bundle commands are triggered, all the sources are

contacted simultaneously to download the required gem instead

of being contacted one by one. Since the public library we target is

served by the o�cial package server, the malicious library on the

attack server needs to compete with the legitimate one.

From the source code, we �nd that the client �rst retrieves the

metadata of the requested gems from all servers, merges them into

a list, and picks the last one in the list to install. Each gemmetadata

is a tuple with several package information, and the di�erent �elds

for gems with the same name are mainly the version number and

the source server name. In the code, this list is sorted using the de-

fault Ruby tuple comparator; thus, for gems from the same source,

normally the one of the latest version is picked. For the install

commands of bundle and gem, we �nd that the source server name

�eld is put before the version number �eld in the tuple. Thus, as

long as the malicious server name is larger than the o�cial Ruby

package server name in string comparison, the gem from the at-

tack server is picked. In the SRV response, the attacker controls

the attack server name string, and can thus deterministically force

the installation of the malicious gem. For the update commands of

bundle and gem, only the version number is used so that the gem

is installed only if its version number is larger than the one that

is already installed by the client. Thus, for update commands, the

attack gem just needs to use a version number that is higher than

that in the latest public one to force the installation.

10

Session D5: Network Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

950

For both install and update commands, we have veri�ed that

the injection succeeds by modifying the o�cial net-dns gem to in-

clude additional code. These commands can also use HTTPS, but

similar to the results in §5.3, they are found vulnerable due to V2.

Using our analysis framework, we have also veri�ed the injection

attack under HTTPS. Also note that since the version number is

used in the gem selection during the update commands, the at-

tacker can use a large version number to prevent future updates of

a gem, making the malicious library injection permanent.

6.3 Document Leakage

In macOS, the printer service discovery is triggered by going to

the Printer & Scanner preference page, or by clicking on the Print

option in an editor. The discovery process discovers both the lo-

cal link and the con�gured device domain for exposed service ipp,

printer, pdl-datastream, and riousbprint. The attack strate-

gies for these services are the same, and in this section we only

describe the attack on ipp as an illustrative example.

In the ipp discovery in macOS, only the service instance name

�elds are extracted and presented in a list for the user to choose

(illustrated in Fig. 2). This leads to the vulnerable design choice V3

on the discovery responses, allowing the attacker to have arbitrary

control over all the user-visible content. Thus, the attack strategy is

to pick a deceptive name to trick the user into using the attacker’s

printer. Since printers are typically named using the brand and the

model number, e.g., “Brother HL-6180DW series”, the attacker can

just pick some popular names. Even if the user is intended to use

a nearby printer in local link instead of a network printer in the

discovery domain, she can still make the wrong choice since the

service instance names alone provide no such information.

In addition, we �nd that the attacker can control not only the

content, but also the order of the printer names in the list. In the im-

plementation, the discovered printer name list is sorted in ascend-

ing alphabetical order. Thus, an attacker can start the attack printer

name string with an invisible character that is smaller than any

English letter in character comparison, e.g., STX (ASCII code 2 [7]).

With this, we have con�rmed that the attacker-injected printer

name is always ranked the �rst so that it is more likely to be cho-

sen, especially when the names in the list all appear legitimate.

For the macOS ipp implementation, no server authentication

is used in AP3. Thus, once the user picks the attack printer, the

printed documents are leaked to the attacker. Thus, to prevent such

exploit it solely depends on whether the user can choose the legit-

imate name. However, since only the service instance name �eld

is used, both the printer name and order in the user interface are

fully controlled by the attacker to in�uence the user’s choice.

6.4 Credential Theft

For the services in U1, sending a password in plain text to the

server in the PSK-based authentication directly causes credential

theft. XMPP client PSI, CardDAV and CalDAV clients macOS and

iOS Contacts and Calendar, all use TLS but accept a publicly-valid

certi�cate by default. After bypassing such check by exploiting V2,

the attack server then exploits V4 to get the password in plain

text by suggesting to use PLAIN for PSI, and Basic for macOS and

iOS Contacts and Calendar. These exploits are stealthy, since these

clients support background launching or syncing: PSI by default

launches during OS booting, and macOS and iOS Contacts and Cal-

endar have periodic syncing that can be as frequent as every one

minute. Details about the attack setup are in in Appendix §B, §C.

For the services in U2, causing password leakage requires not

only a weak PSK-based authentication method, but also an e�ec-

tive way to trick the user to select the attack server in the dis-

covered server list. In the following, we detail credential theft at-

tacks on macOS service discovery implementations for ftp, ssh,

sftp-ssh, and telnet. When using the macOS default terminal,

the user can choose to browse remote connections with these four

options. Once they are clicked, the client issues the corresponding

service discovery queries to both the local link and the unicast dis-

covery domain. If the user picks the attack server to connect, these

clients send the credential in plain text to the attack server.

For these clients, the key step of the exploitation is to leverage

V3 to trick the user to pick the attacker-provided server. In their

UI design, we notice that the server names from the discovery is

displayed in a ranked list with a limited height, which requires

scrolling if the list is too long. Thus, the attacker can send a long

list of server name strings with invisible characters that are smaller

than any English letter in character comparison, e.g., a TAB [7], to

push the legitimate server names out of the �rst page of the list.

Meanwhile, the attacker sends a deceptive server name starting

with another invisible character that is even smaller in character

comparison, e.g., STX [7]. In the current implementation, when the

server name list is longer than the visible area, the scrolling bar is

not shown by default. Thus, in the list, the attack server appears to

be the only choice when the user browses for remote connections.

With the use of a legitimate looking name such as “MacBook Pro,”

it is likely that the user will at least try this only choice, especially

when she sees the same results after re-browsing multiple times.

7 DEFENSE DISCUSSION
As shown, the widespread client-side name collision vulnerabil-

ities in the exposed service clients cause a wide range of se-

curity risks, and thus require immediate attention and remedia-

tion. Leveraging the insights in §5.4, in this section we propose

a set of service client software level defense strategies, which

complements the previously-proposed DNS ecosystem level solu-

tions [43, 87, 95]. Compared to other levels, service clients are the

direct victims of name collision attacks. Considering the amount

of time required for policy making and solution deployment to

tens to hundreds of sites in the DNS ecosystem [87], it is neces-

sary to provide nearer-term solutions to these service clients so

that they are able to proactively protect themselves. More impor-

tantly, as we show below, service clients are the actual issuers of

the exploited leaked queries and thus can leverage the knowledge

of the intended namespace to fundamentally and more e�ectively

prevent name collision attacks. Note that our analysis also helps

extend the previous DNS ecosystem level solutions to the general

form of name collision attacks, which is in Appendix §D.

Integrate and enforce server authentication. As discussed

in §5.4 and exhibited in V1 and V4, one fundamental cause for the

exposed vulnerabilities is the general lack of server authentication

in today’s internal network service clients. Since these services are

expected to be used in internal networks, e.g., corporate networks,

11

Session D5: Network Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

951

where each user has an internal account, adding PSK-based authen-

tication into the client software design may be most appropriate.

To avoid vulnerable choice V4, the implementation needs to strictly

enforce mutual authentication during the negotiation. Since the

secret is pre-shared, the server has no excuse to not prove that it

knows the secret. For the cases in which PSK may be di�cult to de-

ploy, e.g., NTP servers or printers, the client should use TLS certi�-

cates to verify the sever identity. To avoid vulnerable choice V2, the

TLS certi�cate validationwith namespace di�erentiation proposed

next should be used. Adding these server authentication logic is

generally bene�cial for defending not only name collision attacks

but traditional local network server spoo�ng attacks as well.

Enable namespace di�erentiation in service discovery

and server authentication mechanisms. As discussed in §5.4

and exhibited in V2 and V3, the other fundamental vulnerability

cause is the general lack of namespace di�erentiation in today’s in-

ternal service clients using DNS-based service discovery. To solve

the problem for the service discovery process, the client software

developers need to be explicit about which namespace the discov-

ery is expected to occur in and limit the discovery process to only

local link if appropriate. At the platform level, we suggest the Bon-

jour or other Zeroconf platforms to limit their discovery APIs to

only perform local link discovery if unicast DNS domain discov-

ery is not explicitly speci�ed. Since these platforms are mainly de-

signed for local link discovery, the default API behavior should not

include the unicast domain discovery. These additional resolution

requests unnecessarily enlarge the attack surface and allow name

collision attacks to happen.

To enable namespace di�erentiation in the TLS-based server au-

thentication, service clients need additional functionality to di�er-

entiate certi�cates with the same name subject but from di�erent

namespaces. One candidate solution for this may come from a set

of recent standards from the IETF, called DNS-based Authentica-

tion of Named Entities (DANE) [26]. In DANE, authorities specify

the authentication information of their services through the DNS

lookup. This natively addresses the name collision vulnerability

in the same substrate where it is normally exploited: DNS [101].

More concrete evaluation of this defense solution direction is left

as future work.

Application-speci�c defenses. Internal service clients can

also add application-speci�c defenses. For example, for the mali-

cious library injection attack on the Ruby library discovery ser-

vice (§6.2), a library signing process can be added on the internal

servers for the client to check the authenticity of the libraries. Also,

for the document leakage attack on the printer discovery service

(§6.3), the client software can disable the use of invisible characters

to prevent the attacker from manipulating printer name display.

8 RELATED WORK
Name collision attacks. After the launch of the New gTLD Pro-

gram, some studies have been performed to understand its impact

on the DNS ecosystem [94, 96], including a few expressing con-

cerns about the name collision problem. A preliminary study by

ICANN found that the potential for name collisions with the pro-

posed new gTLDs was substantial [44]. Osterweil et al. used the

leaked queries to quantify the name collision risk [102]. Compared

to these work on analyzing the name collision problem, our work

focuses on studying the vulnerability status and defense solutions

at the service level.

Recently, Chen et al. demonstrated the �rst concrete exploita-

tion of name collisions, the WPAD name collision attack, and per-

formed a systematic study of the problem cause and the vulnera-

bility status [87]. In comparison, our work generalizes the name

collision threat model, and performs security analysis on a much

larger and more diverse set of exposed internal network services.

Attack on DNS and DNS-based service discovery. To attack

end systems using malicious DNS responses, previous attacks re-

quire the attacker to be either on the resolving path [89], or o� the

path but physically inside the targeted network [103]. Compared to

these attacks with tight attack placement and timing requirements,

the name collision attack studied in this paper only needs a domain

registration to exploit users from all over the world, which are thus

easier to launch and also of larger scale. Recently, Lever et al. pro-

posed the concept of residual domain trust abuse in the public DNS

namespace, and used DNS tra�c to characterize such abuse [98].

In comparison, residual trust exploitation is for the same domain

in a single namespace triggered by domain re-registration, but the

trust exploitation in this work is for domains across namespaces

triggered by the name collision problem. Besides, our work focuses

on vulnerability analysis at the service software design level.

Besides DNS systems, there has also been work on studying the

security problems in using DNS-SD. Könings et al. analyzed the

mDNS tra�c in a university network to study the privacy leak-

age [97]. Xing et al. studied the major Zeroconf frameworks, and

found popular apps such as AirDrop are vulnerable to MitM at-

tacks [85]. Compared to these local network attacks, our work con-

siders the name collision attack threat model, which are more pow-

erful, of larger scale, and easier to launch (discussed in §3.1). Due to

such threat model di�erence, our analysis covers not only the local-

link discovery usage scenario targeted in these previous work, but

the unicast DNS domain discovery usage scenario as well.

Vulnerability in server authentication usage. Previous

work uncovered a series of security problems in server authen-

tication in TLS, e.g., certi�cate validation vulnerabilities due to

incorrect use of TLS APIs [90, 92]. In comparison, our paper un-

covers additional usage that is not incorrect or weak by itself, but

only becomes vulnerable under the name collision attack threat

model. For PSK-based authentications, some methods are known

to be weak due to the lack of server authentication, e.g., Basic and

NTLM [21, 37]. This paper characterizes the use of these weak

methods in the exposed service clients, which is found to be a com-

mon vulnerable design choice under name collision attacks.

9 CONCLUSION
In this paper, we perform a systematic study of the robustness of

the service client design and implementations under name colli-

sion attacks for internal network services using DNS-based ser-

vice discovery. Wemeasure the services exposed to this threat, and

perform vulnerability analysis on their clients. Our results show

that nearly all the exposed services have popular clients vulner-

able, suggesting that the name collision problem broadly breaks

common security assumptions made in today’s internal network

service clients. To demonstrate the severity, we construct exploits

and �nd a set of new name collision attacks with severe security

12

Session D5: Network Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

952

implications. Based on the insights from our study, we propose a

series of service software design level solutions, which enables the

victim services to actively defend against name collision attacks.

ACKNOWLEDGMENTS
Wewould like to thank Danny McPherson, Burt Kaliski, Tomofumi

Okubo, Jeremy Erickson, Yihua Guo, Yunhan Jack Jia, Yuru Shao,

Yikai Lin, David Ke Hong, Shichang Xu, and the anonymous re-

viewers for providing valuable feedback on our work. The Univer-

sity of Michigan authors were supported in part by the National

Science Foundation under grants CNS-1318306 and CNS-1526455

and by ONR grant N00014-14-1-0440.

REFERENCES
[1] A DNS RR for specifying the location of services (DNS SRV). https://tools.ietf.

org/html/rfc2782.
[2] Adding DNS-SD Service Discovery Records. http://www.dns-sd.org/

serverstaticsetup.html.
[3] AFP File Server Security. https://developer.apple.com/library/content/

documentation/Networking/Conceptual/AFP/AFPSecurity/AFPSecurity.html.
[4] An Overview of XMPP. https://xmpp.org/about/technology-overview.html.
[5] Annual Day In The Life of the Internet (DITL) collection. https://www.

dns-oarc.net/oarc/data/ditl.
[6] Apple Filing Protocol Concepts. https://developer.apple.com/library/content/

documentation/Networking/Conceptual/AFP/Concepts/Concepts.html.
[7] ASCII Table and Description. http://www.asciitable.com/.
[8] Asterisk custom communications for VoIP. http://www.asterisk.org/.
[9] Autodiscover for Exchange. https://msdn.microsoft.com/en-us/library/o�ce/

jj900169(v=exchg.150).aspx.
[10] Automount NFS in OS X. https://yourmacguy.wordpress.com/2012/06/29/

osx-automount/.
[11] Baïkal: Cal and CardDAV server based on sabre/dav. http://sabre.io/baikal/.
[12] BitTorrent Protocol. http://www.morehawes.co.uk/the-bittorrent-protocol.
[13] Bonjour API Architecture. https://developer.apple.com/library/content/

documentation/Cocoa/Conceptual/NetServices/Articles/programming.html.
[14] Bonjour: Apple’s implementation of zero-con�guration networking protocols.

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/
NetServices/Introduction.html.

[15] Bonjour service types used in Mac OS X. https://developer.apple.com/library/
content/qa/qa1312/_index.html.

[16] Building an Enterprise Root Certi�cationAuthority in Small and Medium Busi-
nesses. https://msdn.microsoft.com/en-us/library/cc875810.aspx.

[17] Calendaring Extensions to WebDAV (CalDAV). https://tools.ietf.org/html/
rfc4791.

[18] CardDAV: vCard Extensions to Web Distributed Authoring and Versioning
(WebDAV). https://tools.ietf.org/html/rfc6352.

[19] Chromes startup random DNS queries tracked in, and polluting users Google
Web History. https://bugs.chromium.org/p/chromium/issues/detail?id=47262.

[20] Comcast’s IPv6 Information Center. http://www.comcast6.net/.
[21] Comparison between NTLM and Kerberos. https://highfromtea.wordpress.

com/tag/ntlmssp/.
[22] Con�gure Email Accounts with Outlook. https://support.marcaria.com/hc/

en-us/articles/215526083-Con�gure-Email-Accounts-with-Outlook.
[23] Con�gure web-site for access with and without the ’www’ domain name pre-

�x. http://support.simpledns.com/kb/a87/con�gure-web-site-for-access-with-
and-without-the-www-domain-name-pre�x.aspx.

[24] Con�guring Pivotal Cloud Foundry SSL Termination for vSphere Deployments.
https://docs.pivotal.io/pivotalcf/1-7/opsguide/ssl-term.html.

[25] Con�guring the Commerce Server Network. https://msdn.microsoft.com/
en-us/library/aa545742(v=cs.70).aspx.

[26] DNS-Based Authentication of Named Entities (DANE). https://tools.ietf.org/
html/rfc6698.

[27] DNS-Based Service Discovery. https://tools.ietf.org/html/rfc6763.
[28] DNS Long-Lived Queries. https://tools.ietf.org/html/draft-sekar-dns-llq-01.
[29] Download RubyGems. https://rubygems.org/pages/download.
[30] Dynamic Updates in the Domain Name System (DNS UPDATE). https://tools.

ietf.org/html/rfc2136.
[31] Edge Server environmental requirements in Skype for Business Server 2015.

https://technet.microsoft.com/en-us/library/mt346415.aspx.
[32] ejabberd: robust, massively scalable and extensible XMPP server. https://www.

ejabberd.im/.
[33] File Transfer Protocol (FTP). https://tools.ietf.org/html/rfc959.
[34] FTP Security Extensions. https://tools.ietf.org/html/rfc2228.

[35] Google open resolver IP addresses. https://developers.google.com/speed/
public-dns/docs/using.

[36] Hacking Time Machine. https://dreness.com/blog/archives/48.
[37] HTTP Authentication: Basic and Digest Access Authentication. https://tools.

ietf.org/html/rfc2617.
[38] HTTP Extensions for Distributed Authoring (WEBDAV). https://tools.ietf.org/

html/rfc2518.
[39] HTTP Over TLS. https://tools.ietf.org/html/rfc2818.
[40] Hypertext Transfer Protocol – HTTP/1.1. https://tools.ietf.org/html/rfc2616.
[41] IANA Service Name and Transport Protocol Port Number Reg-

istry. http://www.iana.org/assignments/service-names-port-numbers/
service-names-port-numbers.xml.

[42] IBM Knowledge Center: LDAP and SSL con�guration example. http://www.
ibm.com/support/knowledgecenter/SSPFMY_1.3.3/com.ibm.scala.doc/con�g/
iwa_con�g_ldap_exmpl_c.html.

[43] ICANN: Mitigating the Risk of DNS Namespace Collisions Phase One. https://
www.icann.org/news/announcement-2-2014-06-10-en.

[44] ICANN Study: Name Collision in the DNS. https://www.icann.org/en/system/
�les/�les/name-collision-02aug13-en.pdf .

[45] Internet Printing Protocol/1.1: Encoding and Transport. https://tools.ietf.org/
html/rfc2910.

[46] Intra-Site Automatic Tunnel Addressing Protocol (ISATAP). https://tools.ietf.
org/html/rfc5214.

[47] Kerberos: The Network Authentication Protocol. http://web.mit.edu/
kerberos/.

[48] kpasswd -MIT KerberosDocumentation. https://web.mit.edu/kerberos/krb5-1.
13/doc/user/user_commands/kpasswd.html.

[49] Let’s Encrypt Certi�cate Authority. https://letsencrypt.org/.
[50] Lightweight DirectoryAccess Protocol (LDAP): The Protocol. https://tools.ietf.

org/html/rfc4511.
[51] Linux ISATAP Setup. http://www.litech.org/isatap/.
[52] macOS Xgrid. http://www.apple.com/server/macosx/technology/xgrid.html.
[53] Microsoft Key Management Services (KMS). http://help.unc.edu/help/

microsoft-key-management-services-kms/.
[54] Microsoft TechNet: SRV Resource Records. https://technet.microsoft.com/

en-us/library/cc961719.aspx.
[55] Name Server API? https://developer.dnsimple.com/v1/nameservers/.
[56] Network Time Protocol Version 4: Protocol and Algorithms Speci�cation.

https://tools.ietf.org/html/rfc5905.
[57] OpenAFS. http://www.openafs.org/.
[58] Openssl: How to generate a CSRwith interactively requested alternative theme

names? https://www.enmimaquinafunciona.com/pregunta/13352/openssl-
como-generar-un-csr-con-nombres-de-alternativa-tema-solicitados-
interactivamente-sans.

[59] Page Description Language. http://printwiki.org/Page_Description_Language.
[60] Picture Transfer Protocol (PTP). http://www.imaging.org/ist/resources/

standards/ptp-standards.cfm.
[61] Post O�ce Protocol - Version 3. https://tools.ietf.org/html/rfc1939.
[62] Required DNS Records for Automatic Client Sign-In. https://technet.microsoft.

com/en-us/library/bb663700(v=o�ce.12).aspx.
[63] REST Resource Naming Guide. http://restfulapi.net/resource-naming/.
[64] RFC 5214: Intra-Site Automatic Tunnel Addressing Protocol (ISATAP). https://

tools.ietf.org/html/rfc5214.
[65] RFC 5424. https://tools.ietf.org/html/rfc5424.
[66] Security Mechanism Agreement for the Session Initiation Protocol (SIP).

https://tools.ietf.org/html/rfc3329.
[67] Server Message Block Overview. https://technet.microsoft.com/en-us/library/

hh831795(v=ws.11).aspx.
[68] Session Traversal Utilities for NAT (STUN). http://www.voip-info.org/wiki/

view/STUN.
[69] SFTP - The Modern FTP. https://www.ssh.com/ssh/sftp/.
[70] Simple Mail Transfer Protocol. https://tools.ietf.org/html/rfc2821.
[71] SIP: Session Initiation Protocol. https://tools.ietf.org/html/rfc3261.
[72] SSLsplit - Transparent SSL/TLS Interception. https://www.roe.ch/SSLsplit.
[73] Static Analysis vs Dynamic Analysis in Software Testing. http://www.

testingexcellence.com/static-analysis-vs-dynamic-analysis-software-testing.
[74] Static Content Subdomain. https://halfelf.org/2015/static-content-subdomain.
[75] The Case Against DNSSEC. http://www.circleid.com/posts/070814_case_

against_dnssec/.
[76] The DNS Operations, Analysis, and Research Center (DNS-OARC). https://

www.dns-oarc.net/.
[77] The Remote Framebu�er Protocol. https://tools.ietf.org/html/rfc6143.
[78] Tutorial: Run Your Own Gem Server. http://guides.rubygems.org/

run-your-own-gem-server/.
[79] US-CERT Technical Alert (TA16-144A): WPAD Name Collision Vulnerability.

https://www.us-cert.gov/ncas/alerts/TA16-144A.
[80] Using Digest Authentication as a SASL Mechanism. https://tools.ietf.org/html/

13

Session D5: Network Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

953

rfc2831.
[81] Web Authentication Proxy Con�guration Example. http://www.

cisco.com/c/en/us/support/docs/wireless-mobility/wlan-security/
116052-con�g-webauth-proxy-00.html.

[82] Zero Con�guration Networking (Zeroconf). http://www.zeroconf.org.
[83] The New gTLD Program. https://newgtlds.icann.org/en/about/program, 2013.
[84] New delegated TLD strings. http://newgtlds.icann.org/en/program-status/

delegated-strings, 2017.
[85] X. Bai, L. Xing, N. Zhang, X. Wang, X. Liao, T. Li, and S.-M. Hu. Staying Secure

and Unprepared: Understanding and Mitigating the Security Risks of Apple
ZeroConf. In IEEE S&P, 2016.

[86] S. Castro, D. Wessels, M. Fomenkov, and K. Cla�y. A Day at the Root of the
Internet. volume 38, pages 41–46. ACM, 2008.

[87] Q. A. Chen, E. Osterweil, M. Thomas, and Z. M. Mao. MitM Attack by Name
Collision: Cause Analysis and Vulnerability Assessment in the New gTLD Era.
In IEEE S&P, 2016.

[88] S. Cheshire and M. Krochmal. Multicast DNS. rfc6762, 2013.
[89] H. Duan,N.Weaver, Z. Zhao, M.Hu, J. Liang, J. Jiang, K. Li, and V. Paxson. Hold-

on: Protecting Against On-path DNS Poisoning. In Workshop on Securing and
Trusting Internet Names, 2012.

[90] S. Fahl, M. Harbach, T. Muders, and M. Smith. Why Eve and Mallory love
Android: An analysis of SSl (in) security on Android. In ACM CCS, 2012.

[91] P. Gauthier, J. Cohen, M. Dunsmuir, and C. Perkins. The Web Proxy Auto-
Discovery Protocol. Internet draft, IETF, 1999.

[92] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov.
The Most Dangerous Code in the World: Validating SSL Certi�cates in Non-
browser Software. In ACM CCS, 2012.

[93] S. Goldberg, M. Naor, D. Papadopoulos, L. Reyzin, S. Vasant, and A. Ziv. NSEC5:
Provably Preventing DNSSEC Zone Enumeration. In ISOC NDSS, 2015.

[94] T. Halvorson, M. F. Der, I. Foster, S. Savage, L. K. Saul, and G. M. Voelker. From
.academy to .zone: An Analysis of the New TLD Land Rush. In ACM IMC, 2015.

[95] B. S. Kaliski Jr. and A. Mankin. US Patent Application 20150256424: Name Col-
lision Risk Manager. http://www.freepatentsonline.com/y2015/0256424.html.

[96] A. R. Kang, S. H. Jeong, S. Y. Ko, K. Ren, and A. Mohaisen. Transparency in the
New gTLD Era: Evaluating the DNS Centralized Zone Data Service. In IEEE
HotWeb, 2016.

[97] B. Könings, C. Bachmaier, F. Schaub, and M. Weber. Device Names in the Wild:
Investigating Privacy Risks of Zero Con�guration Networking. In IEEE Inter-
national Conference on Mobile Data Management, 2013.

[98] C. Lever, R. Walls, Y. Nadji, D. Dagon, P. McDaniel, and M. Antonakakis.
Domain-Z: 28 Registrations Later. In IEEE S&P, 2016.

[99] Mockapetris, Paul. Domain Names - Implementation and Speci�cation.
rfc1035, 2004.

[100] A. Mohaisen and K. Ren. Leakage of. onion at the DNS Root: Measurements,
Causes, and Countermeasures. 2017.

[101] E. Osterweil, D. McPherson, and L. Zhang. The Shape and Size of Threats:
De�ning a Networked System’s Attack Surface. In ICNP, 2014.

[102] E. Osterweil, M. Thomas, A. Simpson, and D. McPherson. New gTLD Security,
Stability, Resiliency Update: Exploratory Consumer Impact Analysis. Techni-
cal report, 2013. http://techreports.verisignlabs.com/docs/tr-1130008-1.pdf .

[103] S. Son and V. Shmatikov. The Hitchhiker’s Guide to DNS Cache Poisoning. In
Security and Privacy in Communication Networks. Springer, 2010.

APPENDIX

A Non-registered Service Name Analysis
Automatic labeling script. In non-registered service measure-

ment, it is especially di�cult to identify services with non-

standard queries, since all the �rst labels in the queried domain

names are considered as candidate service names. This loose �lter-

ing condition results in a large number of potential service names

and as described later in §4.2 a large portion of them are actually

irrelevant, e.g., random strings potentially sent by Chrome for in-

fobar customization [19].

To e�ectively identify valid non-registered service names from

the extremely large candidate string set (78.5 million from our

measurement in §4.2), we use an automated approach to conser-

vatively rule out service name candidates that lack su�cient infor-

mation for our study. We label each candidate service name with

nochar, noinfo, noinfo_suf, or info_suf. If the name string does not

contain an English letter, we label it nochar, indicating that the

string itself lacks useful information about the service. Otherwise,

we use a python script to search the string using Google, and if

there are no search results, we label it as noinfo, indicating that

the string is either not related to a service, or not popular enough

so that no related information is available online for our study to

proceed. If the label has search results, we then append it with

popular service discovery su�xes and perform another Google

search. For standard queries, we append su�xes _tcp and _udp.

For non-standard queries, we append example.com, example.net,

contoso.com, and contoso.net, which are popular example do-

main names in network service documentations [31, 42]. If these

searches do not have results, it is labeled as noinfo_suf ; otherwise

it is info_suf. In the subsequent protocol study, we then focus on

the candidates with info_suf labels.

Analysis results. Fig. 3 shows the automatic labeling results.

As shown, for the top 50 server string candidates, the majority

(60%) of them are popular names that at least have some online

references or con�guration tutorials. After the top 50, 60–80% of

the names do not have related online information. As shown, the

majority of them either have no letters in the name, or have no

search results even without DNS domain su�xes.While registered

services are the main focus of this paper, we pick the 30 service

names with info_suf labels among the top 50 candidates for our

subsequent analysis. This enables us to cover the most popular

non-registered services, making our study more comprehensive.

B Exploit Case Study: Phishing Calls and
Messages

Service query exposure. For the SIP client Linphone and the

XMPP client PSI, a user account, for example alice@comp.ntld,

is needed for service registration. When the account is con�gured,

these clients perform service discovery of U1 in the user account

domain, typically happening at the software launching time. Since

these clients remember the account name, when launching them af-

ter switching to the attack environment in our analysis framework,

they still perform discovery based on internal domains in the ac-

count names, causing service query exposure. Both Linephone and

PSI support automatic launching during OS booting. Thus, their

query exposure may happen even without user interaction. In fact,

this automatic launching is the default con�guration for PSI.

Exploitation. We set up the attack server using Asterisk for

Linphone [8], and ejabberd for PSI [32]. During the account lo-

gon, Linphone sends password in MD5 hash without server au-

thentication, which is the designed SIP authenticationmethod [71].

For PSI, the authentication process by default uses DIGEST-MD5,

which provides server authentication [37]. By modifying the ejab-

berd server response in our analysis framework, we let the server

claim to only support PLAIN, which requests the client to send

the password in plain text. As reported in the vulnerability anal-

ysis (§5.3 V4), with a publicly valid certi�cate used to bypass its

certi�cate check, PSI accepts to use PLAIN.

In this attack, our attack servers are implemented to allow a

client to log in with any password. More speci�cally, after getting

the user name from the client logon request, the attack server cre-

ates an account with the same user name but a di�erent password

14

Session D5: Network Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

954

 0

 20

 40

 60

 80

 100

1-50
51-100

101-150

151-200

201-250

251-300

 0

 10

 20

 30

 40

 50

S
e

rv
ic

e
 s

tr
in

g
 c

a
n

d
id

a
te

 %

S
e

rv
ic

e
 s

tr
in

g
 c

a
n

d
id

a
te

 #

nochar
noinfo

noinfo_suf
info_suf

Figure 3: Automatic labeling results for the top 300 non-

registered service string candidates.
Service name Exclusion reason

ssp④, grid⑤, dltimesync⑤, No online service
fmserver-admin⑤ documentation
server*① (NR), your① (NR), test① (NR), No service speci�c
int① (NR), personalize① (NR), dc*① (NR), information
ad*① (NR), domaindnszones① (NR)

Table 4: Services in the exposed service datasetwithout su�-

cient information for us to perform servicedesign character-

ization. Numbers in circle denote the range level of the aver-

age daily query leak volume:① > 100,000, ② 10,000 – 100,000,

③ 1,000 – 10,000, ④ 100 – 1,000, ⑤ 10 – 100. NR denotes non-

registered service names.

Service name Exclusion reason

scanner Need a physical scanner for server setup
ptp Need a physical camera for server setup
airport Need an Apple AirPort for server setup
vlmcs (NR) Need a valid Microsoft production key

for server setup
xgrid, ica-networking Deprecated in the latest macOS
ldaps, https, eppc, Failed to �nd a client software using the
odisk, syslog service name with unicast domain discovery
www* (NR), api (NR), These are non-o�cial naming conventions;
static (NR), share (NR), Excluded since we are more interested in
cf (NR), ns* (NR), uncovering the vulnerable design and
alt* (NR), proxy (NR), implementation choices made under the
tracker (NR) default service discovery con�gurations.

Table 5: Services excluded in the client-side name collision

vulnerability analysis. NR denotes non-registered service.

on the attack server. To allow the victim client to use her pass-

word to log in without modifying the server software, we utilize

an attacker-side proxy to replace the credential used in the client

authentication with the valid credential for the attack server. Since

the proxy is attacker-controlled, the credential is still leaked, while

the victim client appears to be logged in as normal.

After the victim client is logged in, the attacker uses another

account on her server to initiate phishing calls or messages. Under

both Asterisk and ejabberd, we have con�rmed that the displayed

caller or sender names of the attacking accounts are controlled by

the attacker. Thus, the attacker can choose a deceptive name, e.g.,

“Manager” or “IT Department”, to increase the success rate.

C Exploit Case Study: Phishing Contacts &
Calendar Events

Service query exposure. For system applications Contacts and

Calendar on macOS and iOS, the user can con�gure CardDAV and

CalDAV accounts in the form of alice@comp.ntld, and the ac-

count domain becomes the discovery domain. After contacting the

discovered server, new contacts and calendar events are retrieved

and merged with those from all other accounts such as the iCloud

account to present to the user. These clients have periodic synchro-

nization with the server, which can be every one minute, one hour,

etc. When the user leaves the internal network, e.g., at home after

work, this periodic synchronization can thus directly lead to ser-

vice query exposure. In our analysis framework, we set it to syn-

chronize every 1 minute, and have con�rmed the query leakage

after switching to the attack environment.

Exploitation.Weuse Baïkal to set up the attack server for these

CardDAV and CalDAV clients [11]. To avoid using server authen-

tication, we con�gure the server to use Basic instead of the de-

fault choice DIGEST-MD5 as the PSK-based authentication mecha-

nism [37]. During synchronization, Contacts and Calendar in both

macOS and iOS accept the server suggestion of Basic, and directly

send the password encoded in Base64 to the attack server. All these

clients by default choose to use TLS, but they all make the vul-

nerable design choice of accepting our publicly valid certi�cate by

default. Using the proxy approach detailed in the last section, our

attack server lets any client to pass the client authentication, and

thus these CardDAV and CalDAV clients all proceed with the syn-

chronization functionality.

After the clients are connected, our phishing attack goal is to

inject malicious contacts and calendar events. Following the pro-

tocol design, after a synchronization, the server gives the client a

synchronization token to record the latest synchronization state.

In these implementations, we �nd that a state number is used as

the token. During the synchronization, these clients �rst request

the server state number, and only pull new data from the server if

the server state number is higher than the one from the last syn-

chronization. If the server state number is lower, the client makes

no action except storing this lower server state number as the lat-

est state. Thus, for the name collision attacker, the attack strategy

is to keep a high state number, so if the client-stored state number

is lower, the attacker directly triggers the client data pulling re-

quest. In case that the attack server state number is lower than the

client-stored one, the attacker can wait until the client stores the

lower state number after the �rst round of synchronization, and

then start adding phishing contacts or calendar events to trigger

data pulling from the client side.

For macOS and iOS Contacts, to increase the attack success rate,

the attacker can choose to inject name cards that are likely to be

frequently searched and dialed by the user, for example hotline

numbers like “Customer Care”. In such attack, since the victim vol-

untarily dials the phishing number, she is more likely to follow the

attacker’s instruction, for example telling sensitive personal infor-

mation such as the SSN number or the account password. For ma-

cOS and iOS Calendar, the phishing calendar events are best used

as the delivery method for other exploits. For example, the events

can include links to phishing websites or PDF �les with malicious

scripts. To increase the success rate, they can masquerade as re-

minders for popular corporate events such as “Weekly Meeting”

and set up to pop up during working hours.

15

Session D5: Network Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

955

Service name Service description and documentation

wpad (N) Web Proxy Auto-Discovery (WPAD) protocol,
used by web clients to locate web proxies [91]

isatap (N) Intra-Site Automatic Tunnel Addressing Protocol (ISATAP),
used by dual-stack (IPv6/IPv4) clients to automatically tunnel
IPv6 packets in IPv4 networks [64]

proxy (N) Popular �rst label for a web proxy server [81]
vlmcs (N) Microsoft Key Management Services (KMS), used by

Microsoft clients to automatically activate volume license
editions of Microsoft Windows and O�ce [53]

ntp Network Time Protocol (NTP), used by clients to synchronize
computer clocks in the Internet [56]

ns* (N), alt* (N) Popular �rst label for a DNS name server [55, 58]
lb (N), db (N), Labels for domain enumeration in DNS-SD [2]
dr (N), dns-sd
tracker (N) Used by BitTorrent users to locate the tracker, which manages

BitTorrent peers in a torrent [12]
dns-llq DNS Long-Lived Queries, used by clients to locate DNS

servers with long-lived query support, which allows clients
to learn DNS data changes without polling the server [28]

www* (N), Popular �rst labels for a server hosting web content,
api (N), static (N), web elements, and web operations [10, 23, 24, 63, 74]
share (N), cf (N)

http, https Hypertext Transfer Protocol, used by web clients to browse
web content [39, 40]

stun Session Traversal Utilities for NAT (STUN), used by clients to
get the IP address and port allocated to it by a NAT [68]

ptp Picture Transfer Protocol (PTP), used by clients to transfer
images from digital cameras [60]

dpap Digital Photo Access Protocol (DPAP), used by iPhoto clients
to share photos starting in iPhoto 4.0 [15]

kerberos The Kerberos service, used by clients to perform network
authentications [47]

rubygems Used by RubyGems, the package manager in Ruby to help
clients download Ruby coding libraries [29]

gc (N) Used by clients to locate a Microsoft Global Catalog (GC)
server in a domain [54]

ldap, ldaps Lightweight Directory Access Protocol (LDAP), used by
clients to access directory services [50]

carddav, carddavs vCard Extensions to WebDAV (CardDAV), used by clients
to access, manage, and share contact information [18]

caldav, caldavs Calendaring Extensions to WebDAV (CalDAV), used by clients
to access, manage, and share calendaring information [17]

dns-update Dynamic Updates in the DNS, used by DNS clients to add or
delete resource records in DNS zones [30]

afs3-vlserver Used by clients to access the Andrew distributed �le system
(AFS) [57]

Service name Service description and documentation

adisk Used by Apple Time Machine clients to perform automatic
disk discovery [36]

smb Server Message Block (SMB), used by clients to share �le
over a network [67]

afpovertcp Apple Filing Protocol Over TCP, used by clients to share �le
over a network [6]

ftp, sftp-ssh File Transfer Protocol (FTP), used by clients to transfer �le
over a network [33, 69]

webdav HTTP Extensions for Distributed Authoring (WebDAV), used
by web clients to manage remote web content [38]

odisk Used by Mac Clients to access remote CD or DVD
rfb Remote Framebu�er (RFB) protocol, used by clients to view

and control a window system on a remote computer [77]
ssh Secure Shell (SSH) protocol, used by clients to access a remote

computer [15]
eppc Used by clients to send remote Apple events [15]
telnet Used by clients to access a remote computer [15]

kpasswd Used by clients to change Kerberos passwords [48]
airport Used by clients to con�gure a AirPort base station [15]

servermgr Used by macOS clients to manage macOS servers [15]
autodiscover (N), Exchange Autodiscover service, used by clients

outlook (N) to automatically con�gure Microsoft Exchange [9]
mail* Used by clients to locate POP3 or SMTP mail servers [22]
pop3 Post O�ce Protocol (POP), used by clients to locate POP

mail servers [61]
smtp Simple Mail Transfer Protocol (SMTP), used by clients to

locate SMTP mail servers [70]
sip, sips, Session Initiation Protocol (SIP), used by clients to

sipinternaltls (N), create, modify, and terminate Internet telephone
sipinternal (N), call sessions [62, 71]
sipexternal (N)
xmpp-server, Extensible Messaging and Presence Protocol (XMPP),
xmpp-client used by clients to manage sessions for messaging, network

availability, and request-response interactions [4]
printer Used by client to locate network printers [15]

riousbprint Used by the AirPort base station to share USB printers [15]
pdl-datastream Used by client to locate network printers supporting

Page Description Language (PDL) [59]
ipp Internet Printing Protocol (IPP), used by clients to

locate network printers supporting IPP [45]
scanner Used by macOS clients to locate network scanners [15]

ica-networking Used by macOS Image Capture app to share cameras [15]
xgrid Used by macOS clients to locate Apple xGrid agents for

distributed computing [52]
syslog The Syslog protocol, used by clients to send and receive event

noti�cation messages [65]

Table 6: Descriptions and documentations of the exposed internal network services. N denotes non-registered service.

D DNS Ecosystem Level Defense Discussion
Besides the service level, defense solutions can also be deployed at

the DNS ecosystem level, i.e., by relevant parties such as new gTLD

registries, victim Autonomous Systems (ASes), and end users. In

this section, we discuss how to extend the previous DNS ecosys-

tem level remediation strategies for the WPAD name collision at-

tack [87] to the general form of name collision attacks in this paper.

New gTLD registry and victim AS level remediation. Pre-

vious work proposes that the new gTLD registries and the victim

ASes with high volumes of query leakage can mitigate the WPAD

name collision attack based on a set of highly-vulnerable domains

(HVDs) [87]. With the HVD set, new gTLD registries can prevent

the attack by ensuring that these HVDs are not registered or at

least treated more carefully during registration. The victim ASes

can �lter or alter the queries to these domains before directing

them to the public namespace. These remediation strategies are

still applicable for the general form of name collision attacks in

this paper. The previously established HVD set would need to in-

clude the extended service list in addition to the WPAD service.

End user level remediation.At the end user level, the defense

mechanisms becomes more challenging since the leakage may be

caused not only by OS-level hardcoding like those in the WPAD

name collision attack but also by application-level hardcoding such

as by the user account con�gurations in SIP and XMPP clients.

Thus, we propose to design an name collision defense software

which can �lter out DNS queries to the public namespace if they

are only intended to be resolved locally. To perform such �ltering,

a policy con�guration needs to be provided to specify whether the

queries to a domain should be “local resolution only”. This defense

software can be integrated into corporate OS images and IT de-

partments can set such policies during the initial device setup. For

example, if the company using the local domain name comp.ntld

does not own the domain in the public namespace, it can simply set

the policy for this domain as “local resolution only”. A long-term

remediation, though one that could require a signi�cant amount of

operational e�ort, is to convert from using iTLDs to fully quali�ed

domain names (FQDNs) as the root of this threat stems from the

use of iTLDs that collide with the globally delegated TLDs.

16

Session D5: Network Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

956

