

1

ICANN monitoring system API

Version 2.4
2017-02-08

1. Introduction .. 2

1.1. Date and Time .. 2
1.2. Glossary .. 2

2. Common elements used in this specification ... 4
3. Session handling ... 5

3.1. Creating a session ... 5
3.2. Closing a session ... 5

4. API method authentication .. 7
5. Specification 10 monitoring .. 8

5.1. Monitoring the state of a TLD .. 8
5.2. Monitoring the Alarm status of a Service .. 10
5.3. Monitoring the availability of a Service ... 11
5.4. Query a list of Incidents for a Service ... 11
5.5. Monitoring the state of a particular Incident .. 13
5.6. Monitoring the False Positive flag of an Incident .. 14
5.7. Querying the list of measurements for an Incident .. 15
5.8. Querying the details of a particular measurement ... 16

5.8.1. DNS/DNSSEC Monitoring error codes .. 20
5.8.2. RDDS Monitoring error codes .. 21

6. Maintenance window support ... 22
6.1. Common elements for maintenance window support .. 22

6.1.1. Schedule object ... 22
6.1.2. Schedule object identifier ... 22

6.2. Creating or updating a schedule for a maintenance window 22
6.3. Deleting a schedule for a maintenance window .. 23
6.4. Retrieving a schedule object for a maintenance window 23
6.5. Getting the list of maintenance windows that have not ended yet 24

7. Probe node network .. 25
8. HTTP/400 extended error codes ... 27

2

1. Introduction

This document describes the REST API methods provided by ICANN to registry operators in
order to retrieve information collected by the ICANN monitoring system.

1.1. Date and Time

All the fields that represent dates in this document must contain timestamps indicating the date
and time in Coordinated Universal Time (UTC).

1.2. Glossary

In the following section, the concepts used in the monitoring system API are explained:

• Service: a service that may be monitored by the ICANN monitoring system. The potential

monitored services are: dns, rdds, epp and dnssec.

• Test Cycle: series of tests executed to verify the state of a monitored Service. For DNS,

the Service is considered to be up at a particular moment, if at least two of the delegated
name servers registered in the DNS have successful results from tests to each of their
public-DNS registered IP addresses in the root zone for the name server. For the RDDS
Services (i.e. Whois tcp/43 and web-Whois) to be considered up at a particular moment,
the Services must have successful results from tests to the randomly chosen public-DNS
registered IP address to which whois.nic.<TLD> resolves. If 51% or more of the testing
probe nodes see a monitored Service as unavailable at a given time, the Service will be
considered unavailable. For RDDS, if any of the RDDS Services (i.e. Whois tcp/43 and
web-Whois) is considered unavailable, the RDDS will be considered unavailable. The
minimum number of active testing probe nodes to consider the results of a test cycle as
valid at any given time is 20 for DNS and 10 for RDDS; otherwise the test cycle results
will be discarded and the Service will be considered up.

• Test: for DNS it means one non-recursive DNS query sent to a particular IP address via
UDP or TCP; if DNSSEC is offered in the queried DNS zone, for a query to be
considered answered, the signatures must be positively verified against a corresponding
DS record published in the parent zone. For RDDS it means one query sent to a
particular IP address. The answer to the query must contain the corresponding
information from the Registry System, otherwise the query will be considered
unanswered. A query with a RTT higher than X milliseconds will also be considered
unanswered. For DNS (UDP) X=2,500 ms, DNS (TCP) X=7,500 ms for RDDS X=10,000
ms.

• RTT (Round Trip Time): for DNS/UDP, the sequence of two packets, the UDP DNS

query and the corresponding UDP DNS response. For DNS/TCP, the sequence of
packets from the start of the TCP connection to its end. For Whois tcp/43, the sequence
of packets from the start of the TCP connection to its end, including the reception of the
Whois tcp/43 response. For web-Whois, the sequence of packets from the start of the
TCP connection to its end, including the reception of a HTTP response; if the Registry
Operator implements HTTP URL redirection (e.g. HTTP 302), only the last HTTP
transaction is measured.

3

• Emergency Threshold: downtime threshold that if reached by any of the monitored
Services may cause the TLD's Services emergency transition to an interim registry
operator. To reach an Emergency Threshold a Service must accumulate X hours of total
downtime during the last 7 days (i.e. rolling week). For DNS X=4, for RDDS X=24.

• Incident: an Incident is the collection of measurements from the moment an Alarm is

generated until the moment that the Alarm is cleared. An Incident can have 2 distinct
states:

 Active: measurements corresponding to a current downtime.
 Resolved: measurements corresponding to past downtime.

The measurements of Incidents that occurred in the last 7 days (i.e. rolling week, from:
the current date and time -7days, to: the current date and time) are considered for the
Service's Emergency Threshold calculations.

• Alarm: an Alarm signals that a Service has been detected as being down because X
consecutive test cycles with Y minutes between them failed. An Alarm is cleared when
the Service is detected as being up because X consecutive test cycles with Y minutes
between them have been successful. For DNS, X=3 and Y=1. For RDDS, X=2 and Y=5.
An alarmed Service triggers the creation of an Incident; if the Alarm is cleared then the
Incident will be marked as resolved.

• False Positive: a flag set to an Incident indicating that an Incident was found by a

manual process to be a false positive. When an Incident is marked as a False Positive
the measurements of the Incident are not used for the Emergency Threshold
calculations.

4

2. Common elements used in this specification

In the following section, common elements used in this specification are explained:

• <base_url>: the base URL of the ICANN Monitoring System API is
https://mosapi.icann.org/mosapi/<version>/<tld>, for example:
https://mosapi.icann.org/mosapi/v1/example/monitoring/state

Where:

 <version> must be substituted by the version number of the specification supported

by the server. For this specification its value must be 'v1'.
 <tld> must be substituted by the TLD being queried. In case of an IDN TLD, the A-

label must be used.

• <service> must be substituted by the Service being queried. The possible values of
Service, as described in Section 1 of Specification 10, are: dns, dnssec, rdds, and epp.

https://mosapi.icann.org/mosapi/%3cversion%3e/%3ctld
https://mosapi.icann.org/mosapi/v1/example/monitoring/state

5

3. Session handling

The SLA Monitoring system provides two API methods for session handling, the authentication
mechanism is HTTP Basic Access Authentication as specified in RFC 2617.

Authentication credentials for the API methods are provided by ICANN per TLD. The credentials
must only be used when creating a session using the <base_url>/login API method described in
this section.

3.1. Creating a session

<base_url>/login

Possible results:

• HTTP/401, the <base_url>/login API method provides a HTTP/401 status code, sets the

HTTP header Content-type to "text/plain; charset=utf-8", and provides a text response in
the HTTP Entity-body with the string "Invalid credentials" when the authentication
credentials are invalid.

• HTTP/403, the <base_url>/login API method provides a HTTP/403 status code, sets the
HTTP header Content-type to "text/plain; charset=utf-8", and provides a text response in
the HTTP Entity-body with the string "Your IP address is not allowed to connect for this
TLD" if the credentials are valid but the connecting IP address is not whitelisted for the
specified <tld>.

• HTTP/200, when a valid request is received, the <base_url>/login API method provides

an HTTP/200 status code, sets the HTTP header Content-type to "text/plain; charset=utf-
8", and provides a text response in the HTTP Entity-body with the string "Login
successful". The HTTP header Set-Cookie is set with the cookie attributes
"id=<sessionID>; expires=<date>; path=/sla/<version>/<tld>; secure; httpOnly".

 The <sessionID> value is a 160-bit random value encoded in Base16.
 The <date> value is the expiration date of the session.
 The <version> value must be 'v1'.
 The <tld> value is the TLD being queried.

Example using curl (https://curl.haxx.se/) for a login request:

curl --cookie-jar cookies.txt --user user:passwd
https://mosapi.icann.org/mosapi/v1/example/login

Note: the <base_url>/login API method may implement rate-limiting as one of the protection
mechanisms to mitigate the risk of performance degradation.

Note: Every time the <base_url>/login API method successfully validates the credentials and
origin IP address, a new session is created. Only 2 concurrent sessions are permitted per TLD. A
session is only terminated after its expiration date, by using the <base_url>/logout API method, or
if the session is the oldest and a new session is being created that would be above the limit of
permitted concurrent sessions.

3.2. Closing a session

6

<base_url>/logout

In order to destroy a session, the client must set the HTTP header Cookie with the value
"id=<sessionID>", where <sessionID> must be a 160-bit random value provided in the HTTP
server response of a successful "login" request. If multiple cookies are provided, the first cookie is
used for destroying the session.

Possible results:

• HTTP/401, the <base_url>/logout API method provides a HTTP/401 status code, sets the
HTTP header Content-type to "text/plain; charset=utf-8", and provides a text response in
the HTTP Entity-body with the string "Invalid session ID" when the specified <sessionID>
is invalid.

• HTTP/403, the <base_url>/logout API method provides a HTTP/403 status code, sets the

HTTP header Content-type to "text/plain; charset=utf-8", and provides a text response in
the HTTP Entity-body with the string "Your IP address is not allowed to connect for this
TLD" if the specified <sessionID> is valid but the connecting IP address is not whitelisted
for the specified <tld>.

• HTTP/200, when a valid request is received, the <base_url>/logout API method provides

a HTTP/200 status code, sets the HTTP header Content-type to "text/plain; charset=utf-
8", and provides a text response in the HTTP Entity-body with the string "Logout
successful". The HTTP header Set-Cookie is set with the values "id=; expires=<date>;
path=/sla/<version>/<tld>; secure; httpOnly".

 The <date> value is set to the unix epoch date and time.
 The <version> value must be 'v1'.
 The <tld> value is the TLD being queried.

Example using CURL for a logout request:

curl --cookie cookies.txt --cookie-jar cookies.txt
https://mosapi.icann.org/mosapi/v1/example/logout

7

4. API method authentication

When sending a request to the monitoring system API, the client must set the HTTP header
Cookie with the value "id=<sessionID>", where <sessionID> must be the 160-bit random value
provided in the last HTTP server response of a successful "login" request. If multiple cookies are
provided, the first cookie is used for validating the session.

The following responses may be provided by the API by the methods shown below:

• HTTP/401, the API method provides a HTTP/401 status code, sets the HTTP header
Content-type to "text/plain; charset=utf-8", and provides a text response in the HTTP
Entity-body with the string "Invalid session ID" when the specified <sessionID> is invalid.

• HTTP/403, the API method provides a HTTP/403 status code, sets the HTTP header

Content-type to "text/plain; charset=utf-8", and provides a text response in the HTTP
Entity-body with the string "Your IP address is not allowed to connect for this TLD" if the
specified <sessionID> is valid but the connecting IP address is not whitelisted for the
specified <tld>.

8

5. Specification 10 monitoring

Registries may access the monitoring information collected by the SLA Monitoring system using
the GET HTTP verb in the API methods described below. The monitoring information will be
refreshed at least every 2 minutes.

5.1. Monitoring the state of a TLD

<base_url>/monitoring/state

Possible results:

• HTTP/200, when a valid request is received, the <base_url>/monitoring/state API method
provides a HTTP/200 status code and sets the HTTP header Content-type to
"application/json; charset=utf-8".

If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object
intended for future upgrades of the specification; for this version the value will
always be "1".

• "tld", a JSON string that contains the monitored TLD.

• "status", a JSON string that contains the status of the TLD as seen from the

monitoring system. The "status" field may contain one of the following values:

 Up: all of the monitored Services are up.
 Down: one or more of the monitored Services are down.
 Up-inconclusive: the SLA monitoring system is under maintenance or the

information is not conclusive, therefore the TLD is considered to be up by
default.

• "lastUpdateApiDatabase", a JSON number that contains the unix time stamp of

the date and time that the monitoring information provided in the monitoring
system API was last updated from the monitoring system central database.

• "testedService", a JSON array that contains detailed information for each Service

being monitored. The "testedService" object contains the following fields:

o "service", a JSON string that contains the monitored Service (see definition
of Service in section 1.2) field with the monitored Service.

o "status", a JSON string that contains the status of the Service as seen from

the monitoring system. The "status" field can contain one of the following
values:

 Up: the monitored Service is up.
 Down: the monitored Service is down.
 Up-inconclusive: the SLA monitoring system is under maintenance or the

information is not conclusive, therefore the TLD is considered to be up by
default.

9

o "emergencyThreshold", a JSON number that contains the current percentage
of the Emergency Threshold of the Service. Note: the value "0" specifies that
the are no Incidents affecting the Emergency Threshold of the Service.

o "incidents", a JSON array that contains "incident" objects. The "incident"

object contains:

- "incidentID", a JSON string that contains the Incident identifier (i.e.
<incidentID>). The Incident identifier (i.e. <incidentID>) is a
concatenation of the unix time stamp of the start date and time of the
Incident, followed by a full stop (".", ASCII value 0x002E), followed by the
monitoring system identifier.

- "startTime", a JSON number that contains the unix time stamp of the

start date and time of the Incident.

- "falsePositive", a JSON boolean value that contains true or false with the

False Positive status of the Incident.

- "state", a JSON string that contains the current state (i.e. Active or

Resolved) of the Incident.

- "endTime", a JSON number that contains the unix time stamp of the end

date and time of the Incident; if the Incident state is active the "endTime"
field will contain a null value.

Example using CURL to request the state of a TLD:

curl --cookie cookies.txt https://mosapi.icann.org/mosapi/v1/example/monitoring/state

Example of a JSON response for a TLD state request:

{
 "version": 1,
 "lastUpdateApiDatabase": 1422492450,
 "tld": "example",
 "status": "Down",
 "testedService": [
 {
 "service": "DNS",
 "status": "Down",
 "emergencyThreshold": 25,
 "incidents": [
 {
 "incidentID": "1422492450.699",
 "startTime": 1422492450,
 "falsePositive": false,
 "state": "Active",
 "endTime": null
 },
 {
 "incidentID": "1422492850.3434",
 "startTime": 1422492850,
 "falsePositive": true,
 "state": "Resolved",
 "endTime": 1422492950
 }
]
 },
 {
 "service": "RDDS",
 "status": "Up",

10

 "emergencyThreshold": 10,
 "incidents": [
 {
 "incidentID": "1422492450.699",
 "startTime": 1422492450,
 "falsePositive": false,
 "state": "Resolved",
 "endTime": 1422492950
 }
]
 }
]
}

5.2. Monitoring the Alarm status of a Service

<base_url>/monitoring/<service>/alarmed

Possible results:

• HTTP/404, the <base_url>/monitoring/<service>/downtime API method provides a
HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available" if the
specified <service> is not being monitored.

• HTTP/200, when a valid request is received, the

<base_url>/monitoring/<service>/alarmed API method provides a HTTP/200 status code
and sets the HTTP header Content-type to "application/json; charset=utf-8".

If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object
intended for future upgrades of the specification; for this version the value will
always be "1".

• "lastUpdateApiDatabase", a JSON number that contains the unix time stamp of

the date and time that the monitoring information provided in the monitoring
system API was last updated from the monitoring system central database.

• "alarmed", a JSON string that contains one of the following values:

 Yes: an Alarm exists for the Service.
 No: an Alarm does not exist for the Service.
 No-inconclusive: the SLA monitoring system is under maintenance or the

information is not conclusive, therefore the Service is considered to be up by
default.

 Disabled: the Service is not being monitored.

Example using CURL to request the Alarm status of a Service:

curl --cookie cookies.txt
https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/alarmed

Example of a JSON response for a Service in Alarm status:

{

11

 "version": 1,
 "lastUpdateApiDatabase": 1422492450,
 "alarmed": "Yes"
}

5.3. Monitoring the availability of a Service

<base_url>/monitoring/<service>/downtime

Possible results:

• HTTP/404, the <base_url>/monitoring/<service>/downtime API method provides a
HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available" if the
specified <service> is not being monitored.

• HTTP/200, when a valid request is received, the

<base_url>/monitoring/<service>/downtime API method provides a HTTP/200 status
code and sets the HTTP header Content-type to "application/json; charset=utf-8".
If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object

intended for future upgrades of the specification; for this version the value will
always be "1".

• "lastUpdateApiDatabase", a JSON number that contains the unix time stamp of

the date and time that the monitoring information provided in the monitoring
system API was last updated from the monitoring system central database.

• "downtime", a JSON number that contains the number of minutes of downtime of

the Service during a rolling week period.

Example using CURL to request the availability of a Service:

curl --cookie cookies.txt
https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/downtime

Example of a JSON response for a Service availability request:

{
 "version": 1,
 "lastUpdateApiDatabase": 1422492450,
 "downtime": 935
}

5.4. Query a list of Incidents for a Service

<base_url>/monitoring/<service>/incidents?startDate=<startDate>&endD
ate=<endDate>&falsePositive=<falsePositive>

Where:

12

• Optional <startDate> to be substituted by the unix time stamp of the 'after' date and time
to filter by. The filter will match Incidents that started after the provided date and time.

• Optional <endDate> to be substituted by the unix time stamp of the 'before' date and time

to filter by. The filter will match Incidents that started before the provided date and time.

• Optional <falsePositive> to be substituted by true or false in order to filter the Incidents
marked as False Positive. If its value equals true, only Incidents marked as False Positive
will be returned. If its value equals false, only Incidents not marked as False Positive will
be returned. If <falsePositive> is not defined, all Incidents will be returned.

Note: The <base_url>/monitoring/<service>/incidents supports a maximum of 31 days difference
between <startDate> and <endDate>. If only <startDate> is provided, the API method will return
results that are within 31 days after the date and time provided. If only <endDate> is provided, the
API method will return results that are within 31 days before the date and time provided. If neither
<startDate> nor <endDate> are provided, the API method will return results that are within 31
days before the current date and time. If <endDate> is in the future, the value of <endDate> will
be the current date and time.

Possible results:

• HTTP/400, see section 8.

• HTTP/404, the <base_url>/monitoring/<service>/incidents API method provides a

HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available" if the
specified <service> is not being monitored.

• HTTP/200, when a valid request is received, the

<base_url>/monitoring/<service>/incidents API method provides a HTTP/200 status code
and sets the HTTP header Content-type to "application/json; charset=utf-8".

If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object

intended for future upgrades of the specification; for this version the value will
always be "1".

• "lastUpdateApiDatabase", a JSON number that contains the unix time stamp of

the date and time that the monitoring information provided in the monitoring
system API was last updated from the monitoring system central database.

• "incidents", JSON array, see definition in section 5.1.

Example using CURL to request a list of Incidents of a Service:

curl --cookie cookies.txt
https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents?startDate=14224924
00&endDate=1422493000

Example of a JSON response showing a list of Incidents:

{
 "version": 1,
 "lastUpdateApiDatabase": 1422492450,

13

 "incidents": [
 {
 "incidentID": "1422492450.699",
 "startTime": 1422492450,
 "falsePositive": false,
 "state": "Active",
 "endTime": null
 },
 {
 "incidentID": "1422492850.3434",
 "startTime": 1422492850,
 "falsePositive": true,
 "state": "Resolved",
 "endTime": 1422492950
 }
]
}

5.5. Monitoring the state of a particular Incident

<base_url>/monitoring/<service>/incidents/<incidentID>/state

Where:

• <incidentID> must be substituted by the Incident id assigned by the monitoring system.

Possible results:

• HTTP/404, the <base_url>/monitoring/<service>/incidents/<incidentID>/state API method
provides a HTTP/404 status code, sets the HTTP header Content-type to "text/plain;
charset=utf-8", and provides a text response in the HTTP Entity-body with the string "Not
available" if the specified <incidentID> does not exist or if the specified <service> is not
being monitored.

• HTTP/200, when a valid request is received, the

<base_url>/monitoring/<service>/incidents/<incidentID>/state API method provides a
HTTP/200 status code and sets the HTTP header Content-type to "application/json;
charset=utf-8".

If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object
intended for future upgrades of the specification; for this version the value will
always be "1".

• "lastUpdateApiDatabase", a JSON number that contains the unix time stamp of

the date and time that the monitoring information provided in the monitoring
system API was last updated from the monitoring system central database.

• "incidents", JSON array, see definition in section 5.1.

Example using CURL to request the state of an Incident:

curl --cookie cookies.txt
https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents/1422492450.699/sta
te

14

Example of a JSON response for an Incident state request:

{
 "version": 1,
 "lastUpdateApiDatabase": 1422492450,
 "incidents": [
 {
 "incidentID": "1422492450.699",
 "startTime": 1422492450,
 "falsePositive": false,
 "state": "Active",
 "endTime": null
 }
]
}

5.6. Monitoring the False Positive flag of an Incident

<base_url>/monitoring/<service>/incidents/<incidentID>/falsePositive

Where:

• <incidentID> must be substituted by the Incident id assigned by the monitoring system.

Possible results:

• HTTP/404, the <base_url>/monitoring/<service>/incidents/<incidentID>/falsePositive API
method provides a HTTP/404 status code, sets the HTTP header Content-type to
"text/plain; charset=utf-8", and provides a text response in the HTTP Entity-body with the
string "Not available" if the specified <incidentID> does not exist or if the specified
<service> is not being monitored.

• HTTP/200, when a valid request is received, the

<base_url>/monitoring/<service>/incidents/<incidentID>/falsePositive API method
provides a HTTP/200 status code and sets the HTTP header Content-type to
"application/json; charset=utf-8".

If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object

intended for future upgrades of the specification; for this version the value will
always be "1".

• "lastUpdateApiDatabase", a JSON number that contains the unix time stamp of

the date and time that the monitoring information provided in the monitoring
system API was last updated from the monitoring system central database.

• "falsePositive", a JSON boolean value that contains true or false with the False

Positive status of the Incident.

• "updateTime", a JSON number that contains the unix time stamp of the date and
time the False Positive status was updated; if the False Positive status has never
been updated the "updateTime" field will contain a null value.

Example using CURL to request the False Positive flag of an Incident:

15

curl --cookie cookies.txt
https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents/1422492930.699/fal
sePositive

Example of a JSON response for an Incident flagged as False Positive:

{
 "version": 1,
 "lastUpdateApiDatabase": 1422492450,
 "falsePositive": true,
 "updateTime": 1422494780
}

Note: The False Positive flag is the only thing that may change after an Incident is resolved. The
user MAY be notified if an Incident is marked as a false positive by an offline mechanism.

5.7. Querying the list of measurements for an Incident

<base_url>/monitoring/<service>/incidents/<incidentID>/

Where:

• <incidentID> must be substituted by the Incident id assigned by the monitoring system.

Possible results:

• HTTP/404, the <base_url>/monitoring/<service>/incidents/<incidentID>/ API method
provides a HTTP/404 status code, sets the HTTP header Content-type to "text/plain;
charset=utf-8", and provides a text response in the HTTP Entity-body with the string "Not
available" if the specified <incidentID> does not exist or if the specified <service> is not
being monitored.

• HTTP/200, when a valid request is received, the

<base_url>/monitoring/<service>/incidents/<incidentID>/ API method provides a
HTTP/200 status code and sets the HTTP header Content-type to "application/json;
charset=utf-8".

If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object

intended for future upgrades of the specification; for this version the value will
always be "1".

• "lastUpdateApiDatabase", a JSON number that contains the unix time stamp of

the date and time that the monitoring information provided in the monitoring
system API was last updated from the monitoring system central database.

• "measurements", a JSON array that contains a list of <measurementID> values

assigned by the monitoring system. A <measurementID> is a concatenation of
the unix time stamp of the date and time when the measurement was computed,
followed by a full stop (".", ASCII value 0x002E), followed by a random value,
followed by a full stop (".", ASCII value 0x002E), followed by the string "json"
(ASCII value, 0x006A + 0x0073 + 0x006F + 0x006E).

16

Example using CURL to request the list of measurements of an Incident:

curl --cookie cookies.txt
https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents/1422492930.699/

Example of a JSON response showing a list of measurements identifiers:

{
 "version": 1,
 "lastUpdateApiDatabase": 1422492450,
 "measurements": [
 "1422492930.699.json",
 "1422492990.699.json",
 "1422493050.699.json",
 "1422493110.699.json"
]
}

5.8. Querying the details of a particular measurement

<base_url>/monitoring/<service>/incidents/<incidentID>/<measurementI
D>

Where:

• <incidentID> must be substituted by the Incident id assigned by the monitoring system.

• <measurementID> must be substituted by the measurement id assigned by the
monitoring system.

Possible results:

• HTTP/404, the

<base_url>/monitoring/<service>/incidents/<incidentID>/<measurementID> API method
provides a HTTP/404 status code, sets the HTTP header Content-type to "text/plain;
charset=utf-8", and provides a text response in the HTTP Entity-body with the string "Not
available" if the specified <incidentID> does not exist, the specified <measurementID>
does not exist or if the specified <service> is not being monitored.

• HTTP/200, when a valid request is received, the

<base_url>/monitoring/<service>/incidents/<incidentID>/<measurementID> API method
provides a HTTP/200 status code and sets the HTTP header Content-type to
"application/json; charset=utf-8".
If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object

intended for future upgrades of the specification; for this version the value will always
be "1".

• "lastUpdateApiDatabase", a JSON number that contains the unix time stamp of the

date and time that the monitoring information provided in the monitoring system API
was last updated from the monitoring system central database.

• "tld", a JSON string that contains the monitored TLD.

17

• "cycleCalculationDateTime", a JSON number that contains the date and time the test

cycle results were computed.

• "testedInterface", a JSON array that contains information about the interface being
tested. The "testedInterface" fields contains the following fields:

o "interface", a JSON string that contains the tested interface.

o "status", a JSON string that contains the status of the Service after computing the

test cycle results. The "status" field can contain one of the following values:

 Up: the monitored Service is up.
 Down: the monitored Service is down.
 Up-inconclusive: the number of active testing probe nodes is below the

minimum number needed to consider the test cycle results as conclusive.

o "probes", a JSON array that contains detailed monitoring information per probe
node. The "probes" field contains the following fields:

 "city", a JSON string with the location the location of the probe node.

 "status", a JSON string that contains the status of the interface as seen from

the probe node. The "status" field can contain one of the following values:

 Up: the monitored Service is up.
 Down: the monitored Service is down.
 Nodata: the central server did not receive enough data.

 "testData", a JSON array that contains monitoring information. The "testData"

field contains the following fields:

+ "target", a JSON string that in the case of the DNS Service contains the
name server being tested, in the case of RDDS, this field contains "null".

+ "status", a JSON string that in the case of the DNS Service contains the

status of the name server being tested. In the case of RDDS this field
contains the status of the IP address being tested (available in the
"metrics" element, see below). The "status" field contains the following
fields:

 Up: the test was successful.
 Down: the test was not successful.
 No result: the probe node result was not received by the central

database.
 Offline: the probe node is offline.

+ A "metrics", a JSON array with monitoring details of particular tests. The

"metrics" field contains the following fields:

- "testDateTime", a JSON number that contains the date and time the
result was computed.

- "targetIP", a JSON string with the IP Address being tested.

18

- "rtt", a JSON number that contains the milliseconds needed for the
query to be resolved. If the "description" field contains an error code,
the "rtt" field will contain a null value.

- "result", a JSON string that contains the value "ok" if the query

response was valid, or an error code if it was invalid. The information
regarding the error codes may be found in section 5.8.1 and 5.8.2.

Note: the JSON object for the measurement details provides the status of the test cycle
computed from the results of all probe nodes.

Example using CURL to request the details of a measurement:

curl --cookie cookies.txt
https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents/1422734490.699/142
2734490.699.json

Example of JSON response for a DNS Service measurement details request:

{
 "version": 1,
 "lastUpdateApiDatabase": 1422492450,
 "tld": "example",
 "cycleCalculationDateTime": 1422734490,
 "status": "Up",
 "testedInterface": [
 {
 "interface": "DNS",
 "status": "Up",
 "probes": [
 {
 "city": "WashingtonDC",
 "status": "Down",
 "testData": [
 {
 "target": "ns1.nic.example",
 "status": "Down",
 "metrics": [
 {
 "testDateTime": 1422734513,
 "targetIP": "2001:DB8::1",
 "rtt": null,
 "description": "-204, DNSSEC error"
 },
 {
 "testDateTime": 1422734513,
 "targetIP": "192.0.2.1",
 "rtt": null,
 "description": "-204, DNSSEC error"
 }
]
 },
 {
 "target": "ns2.nic.example",
 "status": "Down",
 "metrics": [
 {
 "testDateTime": 1422734513,
 "targetIP": "2001:DB8::2",
 "rtt": null,
 "description": "-204, DNSSEC error"
 },
 {
 "testDateTime": 1422734513,
 "targetIP": "192.0.2.2",
 "rtt": null,
 "description": "-204, DNSSEC error"

19

 }
]
 }
]
 },
 {
 "city": "Sydney",
 "status": "Up",
 "testData": [
 {
 "target": "ns1.nic.example",
 "status": "Up",
 "metrics": [
 {
 "testDateTime": 1422734508,
 "targetIP": "192.0.2.1",
 "rtt": 5,
 "description": "ok"
 }
]
 },
 {
 "target": "ns2.nic.example",
 "status": "Up",
 "metrics": [
 {
 "testDateTime": 1422734508,
 "targetIP": "192.0.2.2",
 "rtt": 6,
 "description": "ok"
 }
]
 }
]
 }
]
 }
]
}

Example of JSON response for a RDDS Service measurement details request:

{
 "version": 1,
 "lastUpdateApiDatabase": 1422492450,
 "tld": "example",
 "cycleCalculationDateTime": 1422734490,
 "status": "Down",
 "testedInterface": [
 {
 "interface": "RDDS43",
 "status": "Up",
 "probes": [
 {
 "city": "WashingtonDC",
 "status": "Down",
 "testData": [
 {
 "target": null,
 "status": "Down",
 "metrics": [
 {
 "testDateTime": 1422734513,
 "targetIP": "2001:DB8::1",
 "rtt": null,
 "description": "-200, No reply from name server"
 }
]
 }
]

20

 },
 {
 "city": "Sydney",
 "status": "Up",
 "testData": [
 {
 "target": null,
 "status": "Up",
 "metrics": [
 {
 "testDateTime": 1422734508,
 "targetIP": "192.0.2.1",
 "rtt": 250,
 "description": "ok"
 }
]
 }
]
 }
]
 },
 {
 "interface": "RDDS80",
 "status": "Down",
 "probes": [
 {
 "city": "WashingtonDC",
 "status": "Down",
 "testData": [
 {
 "target": null,
 "status": "Down",
 "metrics": [
 {
 "testDateTime": 1422734513,
 "targetIP": "192.0.2.1",
 "rtt": null,
 "description": "-200, No reply from name server"
 }
]
 }
]
 },
 {
 "city": "Sydney",
 "status": "Down",
 "testData": [
 {
 "target": null,
 "status": "Down",
 "metrics": [
 {
 "testDateTime": 1422734508,
 "targetIP": "192.0.2.1",
 "rtt": null,
 "description": "-200, No reply from name server "
 }
]
 }
]
 }
]
 }
]
}

5.8.1. DNS/DNSSEC Monitoring error codes

21

The following table lists the error codes for DNS/DNSSEC monitoring:

Result
Code

Message Description

-200 No reply from name server No reply from name server
-201 Invalid reply from name

server
The response received from the server is invalid
(e.g. RCODE=SERVFAIL).

-204 DNSSEC Error The response received form the server is malformed
or the digital signature does not validate using
the previously validated keyset.

-206 Keyset is not valid Error while validating the keyset of the TLD.

Note: DNSSEC errors -204 and -206 trigger a downtime for both DNS and DNSSEC Services.

Note: A future version of the API may add error codes in order to provide additional details
regarding the issue being detected.

5.8.2. RDDS Monitoring error codes

The following table lists the error codes for RDDS monitoring:

Result
Code

Message Description

-200 No reply from RDDS43
server

Connection timed out while trying to get a response
from the server.

-201 Syntax error on RDDS43
output

Syntax error on RDDS43 output

-204 No reply from RDDS80
server

Connection timed out while trying to get a response
from the server.

-205 Cannot resolve the Whois
server hostname

Error when trying to resolve the Whois server
hostname (e.g. whois.nic.example).

-207 Invalid HTTP status code No HTTP/200 status code in response (after
following redirects).

Note: the DNS resolvers used in the system validate DNSSEC.

Note: A future version of the API may add error codes in order to provide additional details
regarding the issue being detected.

22

6. Maintenance window support

The Base Registry Agreement allows the Registry Operator to inform ICANN of planned
maintenance times. However, note that per the Base Registry Agreement, there is no provision
for planned outages or similar periods of unavailable or slow service; any downtime, be it for
maintenance or due to system failures, will be noted simply as downtime.

6.1. Common elements for maintenance window support

6.1.1. Schedule object

Registry operators use the schedule object to manage maintenance windows in the Monitoring
System API. The schedule object contains the following fields:

• "version", a JSON number that contains the version number of the JSON object intended
for future upgrades of the specification; for this version the value will always be "1".

• "name", a JSON string that contains a descriptive name of the maintenance window.

• "enable", a JSON boolean value that contains true when the maintenance window is

enabled and false when the maintenance window is disabled.

• "description", a JSON string that contains a description of the maintenance widow.

• "startTime", a JSON number that contains the date and time (specified in unix timestamp)
when the maintenance window starts being active.

• "endTime", a JSON number that contains the date and time (specified in unix timestamp)

when the maintenance window ends being active.

ICANN will suspend Emergency Escalation services only for the 10% Emergency Threshold alert
for RDDS and EPP when an enabled ("enabled"=true) schedule object exist, and the threshold is
reached on a time covered by the "startTime" and "endTime".

Example of a JSON schedule object:

{
 "version": 1,

"name": "load balancer upgrade",
 "enabled": true,
 "description": "The load balancer will be upgraded to version 3.4",
 "startTime": 1485941725,
 "endTime": 1486001764
}

6.1.2. Schedule object identifier

A schedule object is uniquely identified by a <scheduleID> identifier. The <scheduleID> is an
UUID (as defined in RFC4122) generated by the user. The user defines the <scheduleID>
identifier when creating the schedule object.

6.2. Creating or updating a schedule for a maintenance window

23

In order to create or update a schedule for a maintenance window, the user sends a schedule
object using the PUT HTTP verb in the API method provided at:

<base_url>/mntWin/<service>/<scheduleID>

Possible results:

• HTTP/400, see section 8.

• HTTP/404, the <base_url>/mntWin/<service>/<scheduleID> API method provides a

HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available" if the
specified <service> does not exist.

• HTTP/200, the <base_url>/mntWin/<service>/<scheduleID> API method provides a
HTTP/200 status code if the API method was able to receive the input, no syntax issue
was found in the input, and the PUT verb was successful. The API method sets the HTTP
header Content-type to "text/plain; charset=utf-8", and provides a text response in the
HTTP Entity-body with the string "OK".

6.3. Deleting a schedule for a maintenance window

In order to delete a schedule for a maintenance window, the user make use of the DELETE HTTP
verb in the API method provided at:

<base_url>/mntWin/<service>/<scheduleID>

Possible results:

• HTTP/400, see section 8.

• HTTP/404, the <base_url>/mntWin/<service>/<scheduleID> API method provides a

HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available" if the
specified <scheduleID> does not exist or if the specified <service> does not exist.

• HTTP/200, the <base_url>/mntWin/<service>/<scheduleID> provides a HTTP/200 status

code if the API method was able to receive the input, no syntax issue was found in the
input, and the DELETE verb was successful. The API method sets the HTTP header
Content-type to "text/plain; charset=utf-8", and provides a text response in the HTTP
Entity-body with the string "OK".

6.4. Retrieving a schedule object for a maintenance window

In order to get the information of a schedule object, the user make use of the GET HTTP verb in
the following URL:

<base_url>/mntWin/<service>/<scheduleID>

Possible results:

• HTTP/400, see section 8.

24

• HTTP/404, the <base_url>/mntWin/<service>/<scheduleID> API method provides a

HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available" if the
specified <scheduleID> does not exist or if the specified <service> does not exist.

• HTTP/200, the <base_url>/mntWin/<service>/<scheduleID> API method provides a

HTTP/200 status code if the API method was able to receive the input, no syntax issue
was found in the input, and the GET verb was successful. The API method sets the
HTTP header Content-type to "application/json; charset=utf-8". The schedule JSON
object (see section 6.1.1) is provided in the HTTP Entity-body.

6.5. Getting the list of maintenance windows that have not ended yet

In order to get a list of maintenance window identifiers (i.e. "scheduleID") that have not ended yet,
the user make use of the GET HTTP verb in the API method provided by ICANN at:

<base_url>/mntWin/<service>

Possible results:

• HTTP/404, the <base_url>/mntWin/<service>/<scheduleID> API method provides a

HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available if the
specified <service> does not exist.

• HTTP/200, the <base_url>/mntWin/<service> API method provides a HTTP/200 status

code if the API method was able to receive the input, and the GET verb was successful.
The API method sets the HTTP header Content-type to "application/json; charset=utf-8".
A JSON array of schedule objects is provided in the HTTP Entity-body.

Example using CURL to request the list of maintenance windows:

curl --cookie cookies.txt https://mosapi.icann.org/mosapi/v1/example/mntWin/rdds

Example of a JSON array that contains the list of maintenance windows identifiers:

{
"schedules": [{

 "scheduleID": "7b2d3012-41f7-4bce-89e9-9a9b85575fa6"
 }, {
 "scheduleID": "37e71da9-827d-450a-9909-a64ba42af1d8"
 }]
}

25

7. Probe node network

The current list of probe nodes used by the Monitoring System may be retrieved by using the
GET HTTP verb in the API method provided by ICANN at:

<base_url>/monitoring/nodes

Possible results:

• HTTP/200, when a valid request is received, the API provides a HTTP/200 status code
and sets the HTTP header Content-type to "application/json; charset=utf-8".

If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object
intended for future upgrades of the specification; for this version the value will
always be "1".

• "updateTime", a JSON number that contains the unix time stamp of the date and

time when the list was updated.

• "probeNodes", a JSON array that provides information per probe node. The
"probeNodes" contains the following JSON objects:

o "city", a JSON string that contains the location of the probe node.

o "ipV4", a JSON string that contains the IPv4 address of the probe node. If a

probe node does not support IPv4, the "ipV4" field will contain a null value.

o "ipV6", a JSON string that contains the IPv6 address of the probe node. If a
probe node does not support IPv6, the "ipV6" field will contain a null value.

Example using CURL to request the list of probe nodes:

curl --cookie cookies.txt https://mosapi.icann.org/mosapi/v1/example/monitoring/nodes

Example of a JSON object that contains the list of probe nodes:

{
 "version": 1,
 "updateTime": 1422492450,
 "probeNodes": [
 {
 "city": "Amsterdam",
 "ipV4": "192.0.2.3",
 "ipV6": "2001:DB8::3"
 },
 {
 "city": "Beijing",
 "ipV4": "192.0.2.4",
 "ipV6": null
 },
 {
 "city": "Boston",
 "ipV4": "192.0.2.5",
 "ipV6": "2001:DB8::5"
 },
 {

26

 "city": "Istanbul",
 "ipV4": "192.0.2.6",
 "ipV6": null
 },
 {
 "city": "WashingtonDC",
 "ipV4": "192.0.2.7",
 "ipV6": "2001:DB8::7"
 },
 {
 "city": "Sydney",
 "ipV4": "192.0.2.8",
 "ipV6": "2001:DB8::8"
 }
]
}

27

8. HTTP/400 extended error codes

The API methods provides a HTTP/400 if the input does not comply with the business rules or the
syntax of the input is invalid. The API method sets the HTTP header Content-type to
"application/json; charset=utf-8". A JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "resultCode", a JSON number that contains the result code.

• "message", a JSON string the contains the standard error message defined in the table

below.

• "description", a JSON string the may be used to provide additional error diagnostic
information.

Example of a JSON object that contains extended error codes:

{
 "resultCode":2001,
 "message":"The UUID syntax is incorrect",
 "description":"The UUID (ee69b727-2abb-4f1c-8208-e5e76zzd758f) syntax is incorrect"
}

The following table contains the extended error codes for the HTTP/400 status:

Result
Code

API methods HTTP
Verb

Message

P
U
T

D
E
L
E
T
E

G
E
T

2001 <base_url>/mntWin/
<service>/<schedul
eID>

• • • The UUID syntax is incorrect.

2002 <base_url>/mntWin/
<service>/<schedul
eID>

• The maintenance window start date and time is not
24 hours ahead of the current date and time.

2003 <base_url>/mntWin/
<service>/<schedul
eID>

• The period specified by start and end date and
time is greater than the monthly SLR for the
service.

2004

<base_url>/mntWin/
<service>/<schedul
eID>

• The period specified in the maintenance window
collides with a previously scheduled maintenance
window for the service.

2005 <base_url>/mntWin/
<service>/<schedul
eID>

• • • The maintenance window functionality is disabled
for this TLD.

2006 <base_url>/mntWin/
<service>/<schedul
eID>

 • The maintenance window that you are trying to
delete already started.

2007 <base_url>/mntWin/
<service>/<schedul
eID>

• The endTime is in the past or before the
startTime.

2008 <base_url>/mntWin/
<service>/<schedul
eID>

• The startTime syntax is incorrect.

2009 <base_url>/mntWin/
<service>/<schedul
eID>

• The endTime syntax is incorrect.

2010 <base_url>/mntWin/
<service>/<schedul
eID>

• The maintenance window that you are trying to
update already ended, updates are not allowed.

28

2011 <base_url>/monitor
ing/<service>/inci
dents

 • The difference between endDate and startDate is
more than 31 days.

2012 <base_url>/monitor
ing/<service>/inci
dents

 • The endDate is before the startDate.

2012 <base_url>/monitor
ing/<service>/inci
dents

 • The startDate syntax is incorrect.

2013 <base_url>/monitor
ing/<service>/inci
dents

 • The endDate syntax is incorrect.

2100 <base_url>/mntWin/
<service>/<schedul
eID>

• The JSON syntax is invalid.

	1. Introduction
	1.1. Date and Time
	1.2. Glossary

	2. Common elements used in this specification
	3. Session handling
	3.1. Creating a session
	3.2. Closing a session

	4. API method authentication
	5. Specification 10 monitoring
	5.1. Monitoring the state of a TLD
	5.2. Monitoring the Alarm status of a Service
	5.3. Monitoring the availability of a Service
	5.4. Query a list of Incidents for a Service
	5.5. Monitoring the state of a particular Incident
	5.6. Monitoring the False Positive flag of an Incident
	5.7. Querying the list of measurements for an Incident
	5.8. Querying the details of a particular measurement
	5.8.1. DNS/DNSSEC Monitoring error codes
	5.8.2. RDDS Monitoring error codes

	6. Maintenance window support
	6.1. Common elements for maintenance window support
	6.1.1. Schedule object
	6.1.2. Schedule object identifier

	6.2. Creating or updating a schedule for a maintenance window
	6.3. Deleting a schedule for a maintenance window
	6.4. Retrieving a schedule object for a maintenance window
	6.5. Getting the list of maintenance windows that have not ended yet

	7. Probe node network
	8. HTTP/400 extended error codes

