
Page	1/11	

	

	
	
UASG	
	
	

Criteria for evaluating programming languages and
frameworks with regard to their UA compliance

Version 0.90	
October 24th, 2016	

	
	 	

Page	2/11	

	

	
	

Background	–	Universal	Acceptance	
Universal	Acceptance	is	a	foundational	requirement	for	a	truly	multilingual	Internet,	one	in	
which	users	around	the	world	can	navigate	entirely	in	local	languages.	It	is	also	the	key	to	
unlocking	the	potential	of	new	generic	top-level	domains	(gTLDs)	to	foster	competition,	
consumer	choice	and	innovation	in	the	domain	name	industry.	To	achieve	Universal	
Acceptance,	Internet	applications	and	systems	must	treat	all	TLDs	in	a	consistent	manner,	
including	new	gTLDs	and	internationalized	TLDs.	Specifically,	they	must	accept,	validate,	
store,	process	and	display	all	domain	names.	

The	Universal	Acceptance	Steering	Group	is	a	community-based	team	working	to	share	this	
vision	for	the	Internet	of	the	future	with	those	who	construct	this	space:	coders.	The	group's	
primary	objective	is	to	help	software	developers	and	website	owners	understand	how	to	
update	their	systems	to	keep	pace	with	an	evolving	domain	name	system	(DNS).		

	
	
Goal	
The	following	criteria	are	to	be	used	to	evaluate	whether	a	programming	language	or	
framework	supports	Universal	Acceptance	of	all	domain	names	and	email	addresses.	
	

Glossary	and	abbreviations	
PL	–	programming	language	or	framework	
	
Method	–	an	explicitly	or	implicitly	called	function,	method,	subroutine	or	predicate	(depending	on	
the	paradigm)	used	to	perform	operations	on	a	data	set,	such	as	a	domain	name	in	a	string		
	
Data	set	–	a	domain	name	or	email	address	
	
Core	of	(programming)	language	–	the	extent	to	which	programming	entities	such	as	functions	and	
methods	are	included	in	the	scope	of	the	default	install	of	that	language.	Standard	libraries	are	part	
of	the	core,	non-standard	or	third	party	libraries	or	extensions	are	not	part	of	the	core.	
	
Native	–	native	in	this	context	pertains	to	the	distance	of	the	device	from	the	core	of	the	language	
	
Predefined	–	anything	that	is	for	the	most	part	invariable,	though	maybe	not	immutable.	Methods	
compiled	into	the	interpreter	(for	script	languages)	are	predefined,	though	they	may	be	overridden.	
	
Defined	–	anything	variable,	such	as	a	device	provided	by	a	piece	of	code	as	part	of	a	library	to	the	
language		 	

Page	3/11	

	

	
	

Programming	language	/	framework	evaluation	
	
An	evaluation	template	can	be	found	in	the	appendix	of	this	document.	
	
1.	Initial	observations	&	evaluation	details	
	
The	following	data	is	collected	in	free	flow	text	in	order	to	gain	a	general	understanding	of	
the	language	and	systems	used	to	evaluate.	
	

• Name	of	programming	language,	version	evaluated,	Operating	system	used	for	
Evaluation	

• Which	era	is	the	programming	language	from?	
• Has	network	enabled	communication	been	a	focus	of	the	programming	language?	
• What	are	the	primary	domains	of	the	programming	language	(web/online/offline	

etc),	derived	from	its	real-world	use?	
	

• 	
2.	Scored	evaluation	criteria	
The	criteria	in	this	section	are	scored	according	to	the	points	listed	with	each	criteria	in	the	
evaluation	template	in	the	appendix.	A	criteria	that	is	not	matched	scores	0.		
	
	
	
	
	
After	 judging	 all	 criteria	 questions,	 add	 up	 the	 results	 to	 an	 evaluation	 score	 for	 the	
programming	 language/framework.	 Please	 note	 details/background	 information	 in	 your	
report	beyond	the	score.	
	
In	order	to	evaluate	the	criteria,	the	examples	from	US004	can	be	used.	
	
2.1	a)	Is	TLD	identification	supported	within	the	PL?	

• TLD	identification	is	the	distinct	and	exact	separation	and	lookup	of	the	most	
significant	part	of	the	domain	name.	

• Splitting	a	string	on	a	dot	boundary	is	not	identification,	but	segmentation.	If	a	
lookup	is	missing,	this	criteria	is	not	fulfilled.	

• Code	splitting	a	string	on	a	dot	boundary	and	performing	a	lookup	search	on	a	table	
of	some	kind	fulfills	this	criteria.	
	

	

Page	4/11	

	

2.1	b)	Is	TLD	identification	performed	using	a	predefined	list	or	a	defined	list?	(if	2.1a	
applies)	

• Predefined	lists	could	be	compiled	into	the	PL,	or	otherwise	be	constant.	TLDs	are	
dynamic,	so	predefined	lists	make	this	a	mismatch.	

• Defined	lists	are	able	to	be	updated,	for	example	during	time	of	operation.	Defined	
lists	make	this	a	match.	

• A	DNS	validation	makes	this	valid	as	well,	if	the	environment	is	intended	for	online	
applications	only.	

	
2.1	c)	Are	defined	lists	created	from	official	feeds?	(2.1a	applies)	

• Secondary	providers	(without	integration	into	the	ICANN	processes)	make	this	a	
mismatch.	

• Consequently,	primary	providers	(ICANN/IANA	list	or	DNS	validation)	make	this	a	
match.	

	
2.2	Does	the	PL	offer	native	methods	to	process	a	TLD,	a	domain	name,	email	address	
or	URL?	

• Implementations	of	such	methods	within	the	translation	units	of	the	interpreter	(if	
present)	are	native	by	default.	

• Implementations	of	such	methods	in	the	programming	language	itself	are	to	be	
considered	native	unless	they're	not	bundled	with	the	programming	languages	as	a	
run	time	environment.	

• Hint:	If	a	regular	download	of	the	programming	language	project's	distribution	files	
comes	with	a	"standard	library"	containing	such	methods	for	use	during	run	time,	
this	criteria	matches.	

• Hint:	Score	this	item	4	times,	one	time	for	TLD,	domain	name,	email	or	URL	each	
	
2.3	Does	the	PL	offer	methods	to	inspect	a	TLD,	a	domain	name,	email	address	or	URL	
in	a	structured	manner?	

• Is	the	user	able	to	get	structured	bits	of	information	from	a	data	set?	
• TLD,	Domain	name,	email	address	or	URL	segmentation,	such	as	splitting	host	and	

local	part.	
• Perhaps	identifying	a	TLD,	or	retrieving	the	second	level	domain	name.	
• Hint:	This	is	not	about	validating	the	data	set,	but	about	accessing	parts	of	some	

meaning.	
	
2.4	Do	the	PLs	methods	offer	the	ability	to	assess	the	validity	of	a	data	set	in	a	
structured	manner?	

• Can	the	user	receive	detailed	information	about	the	validation	result?	
• If	the	methods	return	structured	information	indicating	states	such	as	'error	in	local	

part	exists',	or	'address	not	RFC	compliant',	this	criteria	matches.	
• The	PL	reporting	errors	in	the	encoding	of	the	data	set	DOES	NOT	match	this	

criteria.	Encoding	errors	are	unstructured,	hence	they	are	handled	elsewhere.	

Page	5/11	

	

	
2.5	Do	the	methods	handling	TLD,	a	domain	name,	email	address	or	URL	accept	input	
in	Unicode?	

• For	this	criteria,	only	the	common	UTF	variants	count	(UTF-8,	UTF16,	UTF-32).	
• Hint:	Accepting	either	one	of	the	UTFs	will	result	in	a	criteria	match.	

	
2.6	a)	Do	the	methods	handling	TLDs,	domain	names,	email	addresses	or	URLs	allow	
for	input	data	in	Punycode?	

• Punycode	is	detailed	in	RFC3492.	It	converts	Unicode	to	ASCII	for	transport.	
• If	there	are	no	such	methods	allowing	for	Punycode	data,	the	score	is	0.	
• If	there	are	methods	accepting	any	number	of	possible	encodings,	Punycode	must	

be	one	of	these	encodings.	
• If	there	are	versions	of	methods	dedicated	to	only	work	with	Punycode	(such	as	a	

fictitious	method	"validate_domainname_Punycode"	as	a	sibling	to	the	equally	
fictitious	standard	"validate_domainname"),	requirements	are	met.	

	
2.6	b)	Are	methods	handling	TLDs,	domain	names,	email	addresses	or	URLs	able	to	
produce	output	in	Punycode?	

• Punycode	is	detailed	in	RFC3492.	It	converts	Unicode	to	ASCII	for	transport.	
• In	some	instances,	it	is	desirable	to	generate	Punycode	from	another	

representation.	
• If	Punycode	cannot	be	generated	on	request,	the	score	is	0.	
• If	Punycode	can	be	generated	on	request,	the	criteria	is	fulfilled.	

	
2.6	c)	Can	Punycode	validation	be	performed	during	handling	of	Punycode	encoded	
data?	

• Punycode	is	detailed	in	RFC3492.	It	converts	Unicode	to	ASCII	for	transport.	
• Punycode	allows	for	validation	of	Punycode	encoded	strings.	Faulty	Punycode	

encoded	input	must	be	identified.	NOTE:	This	part	concerns	Punycode	encoding,	not	
the	resulting	Unicode.	

• If	it	is	not	possible	to	detect	faulty	Punycode	encoded	input,	the	score	is	0.	
• If	it	is	possible	to	detect	faulty	Punycode	encoded	input,	the	criteria	is	fulfilled.	

	
	
2.7	Do	the	methods	handling	Punycode	identify	incompatible	Unicode	sequences?	

• Punycode	is	not	concerned	with	'compliant'	Unicode	encodings.	
• Punycode	to	Unicode	conversion	must	thus	be	integrated	into	the	methods.	
• Rejection	or	dismissal	of	incompatible	Unicode	sequences	make	this	a	match.	
• Anything	else	makes	this	a	criteria	mismatch.	

	
	

Page	6/11	

	

2.8	Does	the	PL	store	domain	names	and	email	addresses	in	an	endorsed	Unicode	
representation	format	in	memory	during	run	time?	

• Must	be	either	UTF-8/16/32	
	
2.9	Does	the	PL	store	domain	names	and	email	addresses	in	an	endorsed	Unicode	
representation	format	in	persistent	storage?	

• Must	be	either	UTF-8/16/32	
	
2.10	Does	the	PL	implement	handling	of	TLDs,	domain	names,	email	addresses	and	
URLs	according	to	specifications	and	best	practice?	

• Segments	have	maximum	lengths,	but	Punycode	may	exceed	them	(up	to	255	
characters	due	to	DNS	limit).	

• TLDs	can	have	more	then	three	letters,	and	be	internationalized	
	
2.11	When	processing	domain	names	or	email	addresses	for	display,	is	the	string	
representation	of	the	data	converted	from	an	internal	format	to	the	display	format?	
	
2.12	Does	the	PL	account	for	faulty	Unicode	encodings	stemming	from	a	Punycode	
conversion	device?	

• Invalid	Unicode	strings	must	not	be	processed	further,	especially	in	operations	
where	several	conversions	happen	sequentially.	

	
3.	Informational	evaluation	criteria	
	
What	is	the	internal	storage	format	for	TLDs,	domain	names,	email	addresses	and	URLs	
when	used	in	string	form?	

• Please	describe	the	internal	storage	format		
• Name	the	of	the	common	encoding	used.	
• The	storage	format	is	most	likely	a	UTF	type	store.	

	
4.	Technical	notes	
	
Please	note	any	uniqueness	of	the	PL	when	it	comes	to	working	with	TLDs,	domains,	email	
addresses	or	URLs.	
	
5.	Tips	for	implementing	UA	in	PL	
	
5.1	Native	functions	to	use	
Are	there	any	built	in	functions	available	that	fit	the	Universal	Acceptance	criteria	and	
enable	the	PL	to	support	these?	
	

Page	7/11	

	

5.2	Recommended	libraries	
Are	there	any	libraries	available	that	fit	the	Universal	Acceptance	criteria	and	enable	the	PL	
to	support	these?	
	
5.3	Storage	functions	to	use	
Which	ways	of	storing	TLDs,	domain	names,	email	addresses	and	URLs,	do	you	recommend.	
	
5.4	Conversion	functions	
Which	conversion	functions	are	readily	available?	
	
5.5	Proposed	changes	for	better	UA	support	
Please	list	potential	enhancements	that	could	be	made	to	the	PL	and/or	libraries	for	better	
Universal	Acceptance	support.	 	

Page	8/11	

	

Appendix:	Programming	language	/	framework	evaluation	template	
	

1.	Initial	observations	&	evaluation	details	

Name	of	PL	 	

Version	evaluated	 	

Operating	system	used	for	evaluation	 	

Which	era	is	the	PL	from?	 	

Has	network	enabled	communication	
been	a	focus	of	the	PL?	

	

What	are	the	primary	domains	of	the	
PL	(web/online/offline	etc),	derived	
from	its	real-world	use?	

	

	
	

2.	Scored	evaluation	criteria	
The	criteria	in	this	section	are	scored	according	to	the	points	listed	with	each	criteria.	A	criteria	that	is	not	matched	scores	0.		
	
After	judging	all	criteria	questions,	add	up	the	results	to	an	evaluation	score	for	the	programming	language/framework.	Please	note	
details/background	information	in	your	report	beyond	the	score.	

#	 Topic	 Evaluations	 Score	

2.1a	 TLD	identification	 TLD	identification	provided	=	1	
no	TLD	identification	provided	=	0	

	

2.1b	 	 (only	if	2.1a	applies)	
TLD	identification	through	a	list	(w/	updates)	=	1	
TLD	identification	through	DNS	=	2	

	

2.1c	 	 (only	if	2.1b	applies)	
Official	feeds	used	for	lists	=	2	
Other	unofficial	sources		=	0	

	

2.2	 Native	methods	(process)	

2.2a	 TLD	 Native	method	for	processing	TLDs	=	1	
No	native	method	for	processing	TLDs	=	0	

	

2.2b	 Domain	
name	

Native	method	for	processing	domains	=	1	
No	native	method	for	processing	domains	=	0	

	

2.2c	 Email	
address	

Native	method	for	processing	email	addresses	=	1	
No	native	method	for	processing	email	addresses	=	0	

	

2.2d	 URL	 Native	method	for	processing	URLs	=	1	
No	native	method	for	processing	URLs=	0	

	

2.3	 Native	methods	(inspect)	

Page	9/11	

	

2.3a	 TLD	 Native	method	for	inspecting	TLDs	=	1	
No	native	method	for	inspecting	TLDs	=	0	

	

2.3b	 Domain	
name	

Native	method	for	inspecting	domains	=	1	
No	native	method	for	inspecting	domains	=	0	

	

2.3c	 Email	
address	

Native	method	for	inspecting	email	addresses	=	1	
No	native	method	for	inspecting	email	addresses	=	0	

	

2.3d	 URL	 Native	method	for	inspecting	URLs	=	1	
No	native	method	for	inspecting	URLs=	0	

	

2.4	 Native	methods	(validate)	

2.4a	 TLD	 Native	method	for	validating	TLDs	=	1	
No	native	method	for	validating	TLDs	=	0	

	

2.4b	 Domain	
name	

Native	method	for	validating	domains	=	1	
No	native	method	for	validating	domains	=	0	

	

2.4c	 Email	
address	

Native	method	for	validating	email	addresses	=	1	
No	native	method	for	validating	email	addresses	=	0	

	

2.4d	 URL	 Native	method	for	validating	URLs	=	1	
No	native	method	for	validating	URLs=	0	

	

2.5	 Unicode	input	 Unicode	(UTF8/UTF16/UTF32)	is	accepted	=1	
Unicode	is	not	accepted	=	0	

	

2.6a	 Punycode	input	
and	conversion	

Punycode	is	accepted	=	1	
Punycode	is	not	accepted	=	0	
PL	has	facility	for	Punycode	→	Unicode	conversion	=	2	

	

2.6b	 Punycode	
conversion	and	
output	

Punycode	cannot	be	generated	on	request	=	0	
Punycode	can	be	generated	on	request	=	1	

	

2.6c	 Punycode	fault	
detection	

Not	possible	to	detect	faulty	Punycode	encoded	input	=	
0	
Possible	to	detect	faulty	Punycode	encoded	input	=	1	

	

2.7	 Punycode	in	
Unicode	
(identification	of	
incompatible	
sequences)		

Validation	of	Punycode	input	encoding	=	1	
No	validation	of	Punycode	input	encoding	=	0	
	

	

2.8	 Unicode	storage	
at	runtime	

UTF8/16/32	used	=	1	
	
UTF8/16/32	not	used	=	1	

	

Page	10/11	

	

2.9	 Unicode		
(persistent	
storage)	

UTF8/16/32	used	=	1	
UTF8/16/32	not	used	=	0	

	

2.10	 Best	practices	 Validation	of	segments	with	proper	(Punycode!)	max	
length	=	1	
TLD	can	be	longer	than	three	characters	=	1	

	

2.11	 String/Display	
data	conversion?	

Conversion	between	internal	and	display	format	=	1	
else	=	0	

	

2.12	 Faulty	Unicode	
encodings	

Punycode	→	faulty	Unicode	conversions	caught	=	1	
Punycode	→	faulty	Unicode	conversions	not	caught	=	0	

	

Total	Score	 	
	
	
	

3.	Informational	Evaluation	Criteria	

Describe	internal	storage	format	 	

Encoding(s)	used	 	

	
	

	

4.	Technical	Notes	

Please	note	any	uniqueness	of	
the	PL	when	it	comes	to	working	
with	TLDs,	domains,	email	
addresses	or	URLs.	

	

	 	

Page	11/11	

	

5.	Tips	for	implementing	UA	in	PL	

5.1	Native	functions	to	use	 	

5.2	Recommended	libraries	 	

5.3	Storage	functions	to	use	 	

5.4	Conversion	functions	 	

5.5	Proposed	changes	for	
better	UA	support	

	

	

