

DRAFT

Programming Language Hacks
UA103
Version 17-08-09

Millions of users may be denied access to your services because your application has not
kept up with changing standards. That’s not fair to you or to them. Universal Acceptance is
the concept that all domain names and all email addresses work in all applications.
Addressing the issue is in the Bug Fix range of efforts.

The characters available in Top Level Domain Names and email address have changed
markedly since 2010 when non-ASCII characters were first introduced into the Root Zone.
In 2013 the Top Level Domain (TLD) names expanded dramatically as hundreds of new
choices became available and the contents of the Root Zone remain very dynamic. In 2012
non-ASCII characters were also available in mailbox portion of email addresses.1

Examples include:

ascii@ascii.newshort

info1@ua-test.link

ascii@ascii.newlong

info2@ua-test.technology

ascii@idn.ascii

info3@普遍接受-测试.top

ascii@ascii.idn

info4@ua-test.世界

Unicode@ascii.ascii

测试1@ua-test.link

Unicode@idn.idn

测试5@普遍接受-测试.世界

Arabic.arabic@arabic

 دون@رسيل.السعودية

In a recent study of 1000 popular websites just 7% accepted a full range of email addresses
to be used as unique identifiers. When we looked into the code we found no consistency
in the approach, in the RegEx’s used to validate email addresses, and very little use of server
side libraries for validation. There is clearly much to do.

The Universal Acceptance Steering Group (www.uasg.tech) was established in 2015 to raise
awareness of these issues and to facilitate resolution. It is an initiative of the Internet
community and is supported by ICANN. The UASG has developed a range of
documentation, some aimed at management and some aimed at developers.
(www.uasg.tech/documents)

It’s time for developers to update their code to accommodate these new domain names and
email addresses. So here are some tips and tricks to use when updating code:

Input
Data fields that accept domain names or email addresses should be able to accept ASCII
and non-ASCII characters. As the next billion Internet users come on line (and existing
users use addresses that better reflect their sense of identity) most of them will be from

1 RFCs 6530 – 6533 cover Email Address Internationalisation

mailto:ascii@ascii.newshort
mailto:ascii@ascii.newlong
mailto:info2@ua-test.technology
mailto:ascii@idn.ascii
mailto:ascii@ascii.idn
mailto:Unicode@ascii.ascii
mailto:测试1@ua-test.link
mailto:Unicode@idn.idn
mailto:测试5@普遍接受-测试.世界
mailto:Arabic.arabic@arabic
mailto:دون@رسيل.السعودية
http://www.uasg.tech)/
http://www.uasg.tech/documents)

countries that don’t use ASCII and failing to support them will mean missed opportunities.
UTF-8 is the key here. This will affect both programs that accept data from a keyboard or
other data sources and the database where it’s stored. The good news is that most modern
databases will have no problems with this.

Validation
The easiest way to deal with this is to use syntactic validation against the latest
specifications in the RFCs[1]. There are other ways of making sure the data entered is what
the user meant, such as requiring entry of the field twice and doing a compare.
If you need to validate further, use a DNS lookup – that’s the most certain. Or if you’re
going to use a local table of Top Level Domains, make sure that it’s from an authoritative
source2 and that your local table is updated at least daily.

In a recent study there were very few common validation routines in play. It looks like a
Regular Expression is fetched from GitHub or StackOverlow and then tweaked. The UASG
is developing a recommended validation routine.

Storage
The easiest way to deal with storage is to support Unicode. This ensures that the data is
reproducible exactly as received. But for applications or systems that can’t, there is an
algorithm (Punycode)[2] that allows transformation of domain names between ASCII and
non-ASCII strings. Note: The Punycode algorithm is only intended for domain names. For
mailbox names, an alternative encoding schemes may be needed.

Processing
There are times when two different representations (e.g. Unicode and Punycode) of a
domain name are not the same but are equivalent. There are some instances where
variants within a non-ASCII script may exist or when a label uses multiple scripts. When
processing or sorting, it’s important that equivalent names are treated as equivalent. This
will require some policies for the application or indeed the organization as to how domain
names and email addresses are dealt with.

Display
Because domain names in non-ASCII characters (and mailbox names too) are growing more
popular, you’ll need to make sure that you’re able to display them in a way that works for
your community. Public facing applications should certainly display in native scripts and
appropriate fonts and not in ASCII resulting from a Punycode transformation (e.g. A-label).

Check Libraries
A growing number of libraries, particularly Open Source Programming Language Libraries,
will be creating or correcting validation routines, so being able to be UA Ready may be as
simple as re-compiling the code using the latest version of the library. The UASG is
encouraging remediation work in many libraries.

2 There are a few options for the authoritative list of TLDs. The first option is the DNS root zone itself. It is DNSSEC-signed,

so the list is properly authenticated. You can obtain the root zone from any of the following links:
• http://www.internic.net/domain/root.zone

• http://www.dns.icann.org/services/authoritative-dns/index.html

• http://data.iana.org/TLD/tlds-alpha-by-domain.txt

https://uasg.tech/wp-content/uploads/2017/06/UA006-Relevant-RFCs.pdf
http://www.internic.net/domain/root.zone
http://www.dns.icann.org/services/authoritative-dns/index.html
http://data.iana.org/TLD/tlds-alpha-by-domain.txt

Github and SourceForge are also two good places to look to find working code.
The UASG also publishes some good reference material at www.uasg.tech/documents.

Don’t forget Log Files
Application Log Files are important when solving problems and developers should not forget
to ensure that these too are UA ready.

Most efforts to get applications UA Ready will fall into the ‘Bug Fix’ level of effort. It’s time to
get applications up to scratch.

http://www.uasg.tech/documents

	Input
	Validation
	Storage
	Processing
	Display
	Check Libraries
	Don’t forget Log Files

