
I have read this document. I thank Dr Raymond Doctor for preparing it, and for the Devanagari team
for providing it for review. It is a thoughtful and broad response to the initial questions, and I believe
it is extremely useful for the purposes of this project.

Many thanks for your kind remarks as well as the detailed reading of the white paper, which must
have taken quite some time. I have tried to answer to some of your comments not as a justification
but more as a means of explaining the underlying motivation. My comments are provided in red for
easy reading.

I have some detailed comments, which I lay out below. I have keyed my comments to
the section numbers in the paper.

2.1, Abstract Character.

This section argues that the term Abstract Character can be understood as meaning the same as
Glyph. But the Unicode Standard explicitly denies that these are the same:

 - An abstract character has no concrete form and should not be confused with a glyph.

 - An abstract character does not necessarily correspond to what a user thinks of as a “character” and
should not be confused with a grapheme. (see Unicode Standard 6.0, 3.4 D 7, p 66)

 Since one goal is to cleave to external sources for definitions, I think we must say here that Glyph
and Abstract Character are not the same. Moreover, the example here is in terms of the bilabial
unvoiced stop /p/. I think that it is important to recognize that there is a siginficant link between a
language and its writing system(s), but I am under the impression that the Unicode Technical
Committee (henceforth, UTC) tries very hard to stay out of making linguistic decisions and to stick on
the side of encoding writing systems. I suspect, therefore, that an abstract character is more like "the
thing that looks like A with a round thingy over the top", which happens to be encoded in Unicode as
U+00C5 LATIN CAPITAL LETTER A WITH RING ABOVE, U+0041 LATIN CAPITAL LETTER A plus
U+030A COMBINING RING ABOVE, and U+212B ANGSTROM SIGN.

Nicholas Ostler had raised the same issue. All I can state is what I wrote in my response to his
comments: I quote:

“Both you and Andrew have pointed this anomaly out. I have based myself on draft-­‐ietf-­‐appsawg-­‐
rfc3536bis-­‐02,	
 which	
 states	
 as	
 under

glyph
A glyph is an abstract form that represents one or more glyph
images. The term "glyph" is often a synonym for glyph image,
which is the actual, concrete image of a glyph representation
having been rasterized or otherwise imaged onto some display
surface. In displaying character data, one or more glyphs may
be
selected to depict a particular character. These glyphs are
selected by a rendering engine during composition and layout
processing. <UNICODE>	

The way I read (past tense) this text has led me to make this statement. However if I have
misunderstood the text, I stand corrected.”

2.1, Language Character Repertoire

 I think the discussion here is entirely congruent with the reason the JET guidelines originally
conceived of variants in terms of a language rather than a script. But there is a difficult problem
raised as a result, which is that in the context of zone policy, one has to make choices that resolve
registration request conflicts in favour of one language or another. In the root zone (as well as in
gTLDs), such a policy could be problematic, which is why there has been considerable effort to
reduce issues to a script rather than a language. I'm not sure what to do about this sort of problem:
any inter-language problems are going to be extremely difficult to address in these kinds of zones.

The same issue was raised by Nicholas and while I agree in principle to what both you and he state, I
still feel that giving priority to Script over language was one of the biggest fallacies of Unicode. The
confusion in the Arabic code-page could have been avoided, had the code-pages been language
driven rather than a single script-driven code page. The same is the case with Devaanagari and many
other languages to follow which use one single page.

I guess this is the linguist in me rather than the technical person arguing, but for me language came
first, script followed; although I see that IDN’s are all script driven and not language driven.

Just for your reference, am reproducing what I wrote to Nicholas Ostler:

The white paper was never meant to be an “appeal” for Language Tags. However the issue
needs to be discussed and sorted out once and for all. It is a social as well as cultural issue to
degrade language and place it on a rank lower to script, with script gaining primacy. While
Unicode’s preoccupation is with Script (and rightly so), somewhere language has to be given
priority or else languages sharing a script. There are today 71936894 speakers of Marathi
and over 366 million first-language speakers; an additional 121 million second-language
speakers for Hindi, not to mention the 7 other official languages sharing Devanagari1. While I
agree that it could become a « political football » I also feel that mixing all languages sharing
a common script into one melting pot is just as bad a policy.

2.1, Summing-up [some discussion of normalization]

Many thanks for this analysis. I agree with you completely but I am trying to safeguard the common
user since all browsers do not satisfy either Unicode nor ICANN norms(see your comment in 2.3
Table 4) , I will answer all the comments at the end, except some small comments in cases which
need commenting.

 The discussion here suggests that it is important to discuss normalization and to test browsers to
check that they actually perform such normalization. This issue has also come up in the Arabic VIP. I
think some important distinctions are needed.

 First, we need to ascertain whether we are talking about Unicode normalization or something else.
Unicode normalization has four forms: NFC, NFKC, NFD, and NFKD. I could explain all of that here,
except that I would just repeat what is in http://www.unicode.org/reports/tr15/tr15-33.html. If you
haven't read and understood that, however, none of what I am about to say will make any sense.

I have read the RFC in question. The main point I wanted to make was that although there exist
normative structures defined both by Unicode as well as partly by ICANN, browser behavior is
controlled by the browser developer and as our policy white paper which is under development shows,
different browers behave quite insidiously. To rephrase the popular expression Unicode proposes, the
browser disposes (unfortunately) This is why we take Normalisation rather seriously. Moreover I see
that IDNA2008 (which I should have read, I confess) does handle this to a large extent, but…..
(Please see the end of this discussion for some browser/font behavior instances).

 There remain, as I understrand it, some kinds of normalization that are not actually covered by
Unicode normalization. This normalization is generally linguistically sensitive. So, for instance, in
some Arabic-script using writing, there are modifier dots that have no effect on the meaning of a
piece of text, and can be written or not as a writer likes. (But I am told that they are not handled by
the relevant Unicode normalization in this case. More below.) I was under the impression, after the
Pune meeting, that no Devanagari-using language has this issue, but as I speak none I'm hardly
going to be useful in coming up with counterexamples.

Agreed, among Devanagri driven languages there are no counter-examples but I fall back on y
argument given above. An example will illustrate the insidousness of browser behaviour:

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 http://www.oclc.org/languagesets/educational/languages/india.htm	

 Now, as for the normalization we need, we have two kinds that affect us. IDNA2003 -- specifically,
the Nameprep step -- uses NFKC. This is not optional, but the use of compatibility equivalents was
one of the things that people didn't like in IDNA2003 (because it meant that you could not be sure
that the transformation to Punycode and back again didn't lose any data: things like final form sigma
would get mapped away).

 IDNA2008 solves this in two ways. First, it does not itself do any mapping. However, it defines U-
label such that only things in NFC form can be U-labels. How the string in question gets into NFC is
not part of the protocol, and is something that is supposed to happen before IDNA2008 takes over.
Second, IDNA2008 disallows any character that is not stable when performing NFKC and caseFold
(the actual rule is B: toNFKC(toCaseFold(toNFKC(cp))) != cp in RFC 5892 section 2.2. See
http://tools.ietf.org/html/rfc5892#section-2.2). The goal is, roughly, to make sure that only stable
characters are candidates for being used in the protocol, but otherwise to stick to NFC.

 It might seem tempting, then, to try to ensure that applications are using just the right normalization
in all cases, and to try to add policy where it is clear that some clients are not following the protocol.
There are, however, two problems with this approach.

 The first problem is that, if a client isn't using NFC for its U-labels, then it just isn't implementing
IDNA2008. Similarly, if a client isn't performing NFKC on its strings, then it just isn't implementing
IDNA2003. It is probably wise to have registration policies with some sort of sunset clause that
results in the most restrictive policy for the intersection of these two protocols (effectively, one wants
a policy that recognizes that IDNA2003 is still more widely deployed); but that is not the same as
saying that one is going to test for bugs and implement around them. Testing for nonconforming
client software on the Internet is shooting fish in a barrel, and if you try to make policy around the
bugs in Internet client software, you will quickly go mad. But more importantly, at least some clients
can accept and use raw UTF-8 as part of their DNS lookups, and that is regarded as a feature rather
than a bug by the users. Such clients aren't implementing IDNA at all, but are using UTF-8 in the
DNS. This is perfectly legal: DNS labels are not LDH-labels, but bits. It is only by convention (really,
really widely held and widely regarded as protocol, but still a convention) that DNS labels are
restricted to letters, digits, and hyphen.

MY	
 comment	
 to	
 the	
 above.	
 Once	
 again	
 while	
 I	
 agree	
 with	
 you	
 completely,	
 I	
 return	
 to	
 my	
 main	
 fear:	

the	
 browser.	
 Hence	
 the	
 need	
 to	
 involve	
 actively	
 browser	
 developers	
 (which	
 we	
 tried	
 at	
 the	
 Pune	

meet)	
 in	
 the	
 process.	

The	
 issues	
 related	
 to	
 these	
 characteristics	
 of	
 the	
 browsers	
 belong	
 to	
 two	
 broad	
 categories:	
 	

1 Rendering	
 Engine	
 related	
 issues	
 	

2 Font	
 related	
 issues	

Rendering	
 Engine	
 related	
 issues	
 :	

Whenever	
 some	
 text	
 is	
 submitted	
 to	
 a	
 Unicode	
 Enabled	
 application,	
 the	
 rendering	
 engine	
 breaks	
 this	

text	
 in	
 the	
 form	
 of	
 syllables.	
 These	
 syllable	
 formation	
 rules	
 have	
 not	
 been	
 standardized,	
 nor	
 has	

Unicode	
 given	
 any	
 specific	
 rules	
 pertaining	
 to	
 the	
 same.	
 Thus	
 the	
 behavior	
 of	
 different	
 rendering	

engines	
 is	
 different	
 and	
 depends	
 on	
 the	
 understanding	
 of	
 the	
 language/script	
 of	
 the	
 implementing	

body	
 which	
 seldom	
 is	
 perfect.	
 This	
 is	
 exemplified	
 in	
 the	
 cases	
 given	
 below:	

	

	

Font	
 related	
 issues	
 :	

In	
 case	
 of	
 rendering	
 of	
 Domain	
 Names	
 in	
 browsers,	
 font	
 that	
 gets	
 applied	
 on	
 the	
 domain	
 name	
 in	

address	
 bar	
 of	
 the	
 browser	
 plays	
 major	
 role.	
 Each	
 operating	
 system	
 has	
 a	
 specific	
 font	
 which	
 act	
 as	
 a	

default	
 font	
 for	
 every	
 script/language	
 the	
 OS	
 supports.	
 The	
 browser	
 uses	
 default	
 font	
 provided	
 by	

the	
 OS	
 for	
 displaying	
 the	
 domain	
 name	
 in	
 the	
 address	
 bar.	
 	

Similar	
 to	
 the	
 rendering	
 engine,	
 the	
 font	
 implementation	
 also	
 varies	
 from	
 vendor	
 to	
 vendor.	
 And	

thus	
 the	
 same	
 Domain	
 Name	
 can	
 be	
 seen	
 differently	
 depending	
 on	
 the	
 font	
 properties,	
 orthography	

adopted	
 by	
 the	
 font,	
 hinting,	
 weight,	
 kerning	
 etc.	
 There	
 is	
 a	
 strong	
 need	
 for	
 a	
 central	
 authority	
 which	

will	
 bring	
 consensus	
 in	
 these	
 implementations.	
 (optimistic	
 remark!!!!)	

	
 	

	

I	
 trust	
 these	
 examples	
 will	
 justify	
 my	
 fear	
 of	
 “malfaisance”	
 (
 which	
 I	
 hope	
 is	
 unfounded).	
 	
 The	

Devanagari	
 policy	
 white	
 paper	
 under	
 development,	
 provides	
 as	
 an	
 annexure	
 six	
 PDF	
 files	
 of	
 analysis	

of	
 Browser	
 behavior	
 (different	
 browsers	
 x	
 different	
 OS:	
 Linux,	
 Mac,	
 Windows	
 [Chrome	
 yet	
 to	
 be	

tested]	
)	
 and	
 compliance	
 to	
 Unicode	
 as	
 well	
 as	
 ICANN	
 IDNA2008	

Your comments in 2.3 Table 4 below only increase my worry since we have no control over the
Browser behavior nor the rendering Engine for Indic.

2.3.2.1 Orthographic alternanats

 While I like the term "alternants" as a term we might want to adopt, I am having a hard time
understanding why the examples we see in this section do not lead us directly to say, "Color and
 colour are alternants, and by alternant policy the registrant of .color must also received .colour too."
If there _is_ no principled reason why not, then why isn't the converse true. That is, if the case in
English works out the same, what is so special about the non-English cases that the answer should
not be, "If you want two labels, register (and, I presume, pay for) two labels"?

Agreed, point well taken. This is what was discussed at the Pune meet (the paper was written in June
and submitted on the very day of the Pune meet) and the point you have raised was acceptable to all
members present at the Pune meet..

2.3, Table 4

 First, I should note that I think this table is very helpful. I appreciate its development.
 In the first row of this table, item 2, there is the observation that new versions of Unicode will cause
problems. This is true, but it is true _forever_ under IDNA2008. That was part of the
 point. Registries will always need to have sunrise provisions to cope with the fact that new
characters will show up in later Unicode versions. A policy, of course, could be, "We won't
 register them," but then you still have the problem of code points that are PVALID under an earlier
version of Unicode, but become DISALLOWED under later versions.

 This is a feature, and not a bug, of IDNA2008. IDNA2003 was pegged to a particular version of
Unicode, but that didn't work.
 When you upgrade your computer and get a new version of Unicode, you can't tell which version of
Unicode you're using. So many of the putative IDNA2003-implementing clients out there aren't
 actually implementing any standardized protocol at all, because they have a later version of
Unicode and can't tell. The only way to solve this issue is to forbid UTC from changing Unicode, and
we can't do that.

I entirely agree with your observation. In fact this has led to creation of legacy methods of inputting
and constitutes at least for Indic scripts once of the main set of variants.

However we have to ensure that the policy for a given language is Latest Unicode compliant. The only
bright point is that as far as I know all pertinent characters (for Indian scripts) with the exception of a
couple are present in Unicode and hence the policy will not undergo much mutation.

 A later row of the table discusses case marking. I think this is not a problem for anyone, even
though some think it is. IDNA2008 is designed specifically so that upper-case letters aren't
 allowed in U-labels. It's true that this is frustrating when compared with the special processing of A-
Z. There's nothing that can be done about that special processing, however, because it's a
 built in part of the DNS protocol.
This point was raised to show that there are things which need to be accepted. The French (to the
highest degree), English and Germans(to a lesser degree) have accepted the absence of Apostrophe
(Consider that in a paragraph of a French newspaper of around 300 words, at least 80 have
apostrophes.). Case is an issue that German and other case-sensitive languages can do without.

 The last line of this table is potentially useful input to a specific policy, but I do not know how any
general policy can be made on the basis of browser issues. This is for two reasons.
 First, there is absolutely nothing that we can do about different browsers on the Internet. We cannot
detect what browsers people are using when they do DNS lookups, so we cannot react usefully
to such differences. Second, it is not only browsers that are relevant. DNS names are used all over
the place: in mail agents, in SIP VOIP clients, in system configuration files that only
 system administrators ever see, in system logs, and in machine-to-machine transactions in which
no human is directly involved most of the time.
This touches 2.1 (unless I am off tangent) Please see the comment there. Within a holistic picture of
IDN’s the weakest link is the browser and we can really not do much about it.
2.3.3, Problem of the Preferred Variant

 In this section we have a proposal for a way of identifying a number of alternants for one another,
and then picking which of those is to be allocated and delegated. Suppose we have a set of alternants,
{a1..an}. These are each expressions of the Archivariant. The central proposal of this section is that,
on registration request for any one of {a1..an}, the registry is checked for conflicting members of any
other set. If there is no conflict, the entire set {a1..an} is allocated to the registrant. This allocation
does not, however, automatically result in delegation. At this point, it is a matter of registry policy how
many of the individual alternants, if any, are to be registered; and what that will cost.

Agreed. This could be a possible solution and in my opinion the only viable one to the issue

 I would like, however, to distinguish a couple of terms here that I think are used in more than one way.
I want to say that "bundling" is not what has happened in the case of www.color.com and
www.colour.com: those are actually just separate registrations that happen to resolve to the same IP
address (note that they don't go to "the same page". One of them is a redirect to the other, and if you
visit http://www.colour.com you will be redirected to http://www.color.com. This is an http-level redirect
and not something done in the DNS). I think it would be better to use the term "bundling" for the case
where the registry automatically performs the linking of the different registrations together somehow,
as happens here when the allocation of all members of {a1..an} go to the same registrant. Point well
taken and accepted. Many thanks for the useful suggestion

 By the same token, I think it would be good to distinguish reserved and blocked names. We might
want to say that a reserved name is not allocated at all. All two-character domains in the top level that
are not actually registered are in fact reserved: nobody is allowed to register them until ISO allocates
a country code. But a name that is allocated but not delegated is blocked: nobody else can register
the name because, in effect, it is already registered.

Point well taken and accepted. Many thanks for the useful suggestion

I hope these comments are useful.

Extremely	
 useful	
 and	
 I	
 hope	
 to	
 all	
 others	
 who	
 will	
 read	
 this	
 thread.	
 Many	
 thanks	
 to	
 you	
 and	
 Nicholas	

Ostler	
 for	
 taking	
 time	
 off	
 to	
 read	
 through	
 the	
 doc	
 and	
 give	
 such	
 useful	
 inputs.	

	

	

