
1

The IDN Variant Issues Project: A Study of Issues Related to the Delegation of IDN Variant TLDs

Discussion Draft - 5 December 2011

Executive Summary
[TBD]

1. Project Overview
The internationalization of the DNS space is a critical area of work for the ICANN community.
Historically, the DNS root zone has been limited to a subset of the characters in the US-ASCII (American
Standard Code for Information Interchange) character set. This is changing with the introduction of
Internationalized Domain Names (IDNs), including the introduction of new top-level domains (TLDs) in
multiple scripts, enabling Internet users to access domain names using writing systems familiar to them.

The opening of the IDN country code Top-Level Domain (ccTLD) Fast Track Process1 by the ICANN Board
in October 2009 enabled countries and territories to submit requests to ICANN for IDN ccTLDs
representing their respective country or territory names in scripts other than US-ASCII characters.

The new generic Top-Level Domain (gTLD) Program2, approved in June 2011 and opening for
applications in January 2012, will allow for the first time the addition of IDN gTLDs into the root zone.

1.1 The Variant Issues Project
IDNs can serve as powerful tools for broadening the Internet's capacity and accessibility;
however, for a good user experience they also raise unique issues. One important issue
concerns the use of "variants," which, according to one technical definition, occur when a single
conceptual character can be identified with two or more different Unicode Code Points.3 TLDs
containing one or more such characters might be considered “variant TLDs,” and unless carefully
implemented, might result in user confusion or a poor user experience. While the concept of
“variants” is raised in a number of contexts, and in some cases is regarded as critical for the
successful adoption of IDN TLDs to meet user needs, there is no single definition or rule for
determining whether TLDs can be considered variants of one another.

1 http://www.icann.org/en/topics/idn/fast-track/

2 http://newgtlds.icann.org/

3 http://www.ietf.org/rfc/rfc3743.txt

2

In an effort to develop potential solutions for the delegation of IDN variant Top-Level Domains
(TLDs), the ICANN Board in 2010 passed a resolution directing the development of a preliminary
report on the viability, sustainability and delegation of IDN variants.4

The IDN Variant Issues Project plan was published in April 20115, along with a call for volunteers,
and work commenced shortly thereafter. Six script case study teams (Arabic, Chinese, Cyrillic,
Devanagari, Greek, and Latin) worked to identify the set of issues that, if resolved, could enable
the delegation of IDN variant TLDs for the benefit of the respective user communities. The case
study teams comprised a total of 66 experts from 29 countries and territories, and offered
expertise in the areas of: DNS, IDNA, linguistics, security & scalability, policy, registry/registrar
operations, and community representation. The case study team reports were produced on
schedule and published for public comment in October 2011.6

ICANN, assisted by a coordination team comprised of representatives from the case study
teams, has worked to build on these team reports to develop this integrated issues report, to
cover both common issues germane across the cases studied and issues particular to specific
cases. An integrated analysis of the issues associated with IDN variant TLDs will be an important
milestone toward considering follow-on work in this area.

1.2 The Script Case Studies
The six case study reports identify relevant variant issues in six different scripts: Arabic, Chinese,
Cyrillic, Devanagari, Greek and Latin.

Broadly the reports share a common structure, beginning with an introduction of the report’s
authors, and presentation of the history, distribution, and structure of the relevant script. The
reports propose specific terminology to give details on the kinds of issues affecting their script
which may suggest treatment by establishment of a variant management mechanism. Most of
the reports include an exhaustive listing of the Unicode code points (with character names and
glyphs) which make up their script (though not Chinese with over 5000 characters to organize)
and which they recommend for use in TLD labels. There is then a review of the kinds of relations

4 The Board resolution provided that “The CEO is directed to develop (in consultation with the board ES-WG) an
issues report identifying what needs to be done with the evaluation, possible delegation, allocation and operation
of gTLDs containing variant characters IDNs as part of the new gTLD process in order to facilitate the development
of workable approaches to the deployment of gTLDs containing variant characters IDNs. The analysis of needed
work should identify the appropriate venues (e.g., ICANN, IETF, language community, etc.) for pursuing the
necessary work. The report should be published for public review.” See
http://www.icann.org/en/minutes/resolutions-25sep10-en.htm#2.5

5 http://www.icann.org/en/announcements/announcement-20apr11-en.htm

6 http://www.icann.org/en/announcements/announcement-4-03oct11-en.htm

3

between characters (and, in a very few cases, words) which might be modelled with the
mechanism of variants. The language-related and contrastive complexities of individual
characters are later supplemented with issues concerning the ease of character recognition, and
other user issues deriving from constraints on the software and hardware environment in which
the script is currently used. There are, in some cases, examinations of technical issues not
centrally focused on variants (e.g., the degree of acceptability of invisible code points,
apostrophes and other characters which are not members of the code block associated with the
script).

The focus then moves to the procedures for applying to register TLDs in the script, and the
administrative apparatus which remains installed to support them. This last includes operational
security concerns and procedures for dispute resolution.

Most of the reports (4 out of 6) also have a summary of conclusions, to emphasize certain of
their theses.

1.2.1 Statements of General Principles
The focus of the work is the identification of issues concerning the potential use of variant
characters within IDN scripts, to define variant top-level domains (TLDs), whether generic or
country-code. The IDNA Protocol determines whether a code point is Protocol-Valid (PVALID) by
derivation from certain Unicode properties. It was noted with caution that the teams of experts
might not have expertise on every language using the scripts considered. (Arabic §3, Devanagari
§1, Cyrillic §1).

1.2.2 Distinctive Terminologies
To define the field of character variants, the teams initiated their work around a basic set of
definitions for terms as provided by ICANN.7 These were supplemented by terms from the
Unicode website, RFC 6365, and RFCs 5890, 5892 and 5893. (Arabic §4, Latin §2)

The reports also defined additional terms to address properties of their own scripts. All except
the Devanagari and Latin teams found it necessary to define such terms. (Arabic Appendix E,
Chinese §3, Cyrillic §2, Greek §2). The coordination team has worked to arrive at a set of
generally agreed terminology for the IDN Variant Project.

1.2.3 Code Blocks in Extenso; Label Generation Policy
The IDNA Protocol has a very broad-based filter to determine what code points are permitted
under the protocol; the rules are defined in RFC 3892.8 Many teams considered or proposed

7https://community.icann.org/download/attachments/16842778/Draft+Definitions.pdf?version=1&modificationD
ate=1310669168000

8 http://tools.ietf.org/html/rfc5892

4

further restrictions (e.g. to exclude free-standing diacritics), and listed the resulting subsets of
code points which would be available for use in TLDs. (Arabic §5; Chinese §2.1; Greek Appendix
A; Latin Appendix B2).

The Arabic report (§7) notes that in addition to these lists of label-valid code points, a policy on
defining character variants, and a set of other rules and meta-information must also be added,
in order fully to identify the set of possible labels. Taken together, these constitute a Label
Generation Policy. The Chinese report (§7) covers similar ground on the full integration of
character repertoire and variant linkages, but basing its discussion on the concept of a Language
Variant Table, in keeping with RFC 3743.9

1.2.4 Defining the Scope of Variants within a Script
This was the central concern of each case study team. Inevitably, at the outset of the project, it
could not be precisely foreseen what may turn out to be the ultimately acceptable boundary
conditions.

So the Arabic report (§6) and the Devanagari report (§3.2) distinguish cases of identical and
similar glyphs (which might ultimately be seen as cases not of Variance but Visual Similarity).
The Arabic report also notes the existence of interchangeable characters (where the basis for
equivalence is linguistic functions) and optional cases (where the writing system allows some
degree of choice in the exactness of a written form). The Devanagari report does not consider
these latter as potential variants (§4.2). The Cyrillic report (§3) looks at a number of concrete
issues in various Cyrillic-using languages, where additions and refinements to Cyrillic have
created inconsistent usage. Specific examples of these types are listed in Appendices Arabic A
and Cyrillic A.

The Greek report (§6-9) also focuses on inconsistent orthographical practices (e.g. in use of
upper/lower case and the tonos accent), but also (§5) notes the need for a policy on the
orthography of the letter sigma, which (by historic convention) requires positional alternation
between different code points. It also (§13.1) favors recognition of some dialectal word
equivalences as variants, specifically between words in the archaizing katharevousa standard
and the modern dimotiki standard language. The Latin report (§6) – although it ultimately
requests no variants – considers upper/lower case, display forms, glyph identity, decorative
forms, issues with diacritics, and punctuation marks.

The Chinese report (§5) has a different set of preoccupations since its script is ideographic
rather than alphabetic, especially so since the report largely excludes Japanese and Korean with
their additional phonetic systems hiragana, katakana and hangul. It excludes half-width

9 http://www.ietf.org/rfc/rfc3743.txt

5

characters (as not used for Chinese) and also homographs: here a single character has the same
code, glyph and pronunciation, but appears to have multiple meanings. It recognizes variant
characters, however, in two issues: the nexus between Simplified and Traditional characters (as
a species of “regional variation”); and the Generic variants, where (owing to Unicode’s historic
policies in defining Unified Han script) subtly different forms of glyphs (derived from differing
authoritative sources) have been assigned different code points, although they are functionally
non-distinct in Chinese.

Further comparison of the instances and generalizations made by the various groups can be
found in section 4 of this report.

1.2.5 The Role of Visual Similarity as a threat to Glyph Recognition
Many reports refer to the role of visual similarity, which concerns the relationship between the
form of a character as presented for recognition by users, and the specific character identities
assigned by the Unicode code points. (Arabic §6; Chinese §5; Cyrillic §4, 9.1; Devanagari §3.2;
Greek §7; Latin §6.2).

The issue includes potential confusions between glyphs in different scripts: especially among
Latin, Greek and Cyrillic, but also between Devanagari and other closely related Indian scripts. In
fact, it has to do with problems of recognition by users rather than (directly) with clashes of
rights inherent in registration. Potential for cross-script confusion is addressed in Cyrillic §4, 9.1;
Devanagari §3.4, 4.1; Greek §7; Latin §6.8, 7.

1.2.6 Non-Variant Script Issues
A number of technical issues have arisen in considering the need for variants which are not,
strictly speaking, directed at variants. These include:

• available fonts and their impact on glyph shape and recognition (Arabic Appendix C);
• the admissibility of zero-width characters ZWJ and ZWNJ, for the control of glyph

rendering (Arabic §5.21 and Appendix D, Devanagari §4.3);
• the admissibility of characters outside the code-block assigned to a given script, notably

the (extremely similar) apostrophe, saltillo or turned comma (Cyrillic §3.6, 9.2, Appendix
A; Devanagari 3.4, Latin 6.7).

1.2.7 Other User Experience Issues
Some of the reports dwell on specifics of the user situations for Internet use and connections in
their specific script areas.

Arabic §13 considers the inadequacies of computer systems (especially their keyboards and
operating systems) to input and process the full range of Arabic characters in different regions
(cf. Devanagari §5.3); the confusion of font differences resulting from the historic variety of
writing styles (and cf. Cyrillic §3.2, 3.3, 9.1); the intrinsic problems of reversing text direction in

6

using a right-to-left script with many left-to-right elements; and the current lack of penetration
of IDNs into a variety of computer applications used by Arabic-script users.

Chinese §6.1, 6.2 emphasizes the steep learning curve for users of information technology in
China, resulting from historically low levels of technical education, and a dramatic increase in
take-up over recent years. The result is inferred to be a wide-scale requirement of Chinese users
to have computer systems for use in which they can make the same assumptions as in the rest
of their literate practice (and cf. the characterization of the Indian situation in Devanagari §5.5,
and of the Greeks in Greek §7).

Latin §4 highlights the implications of this for policy on upper/lower case sensitivity and web-
browser behavior. Latin §5 points out that the constraints on usability of available characters
which apply to an IDN environment have no precedent in people’s prior experience with ASCII-
coded information technology.

1.2.8 Evaluation of Applications, Registration and Operations
Towards the end of all the reports, consideration is given to administrative concerns: how are
applications for registration to be evaluated and charged, how are registry records to be kept,
how is security to be managed and any disputes to be resolved?

Arabic §8-11, Chinese §8-9, Devanagari §4.4-5, §5 and Latin §9 consider this conglomerate of
issues for their respective script areas, but in virtue of their administrative nature, the points at
issue are much the same.

The reports all emphasize the multiplication of entities which comes about as variant-generating
rules are authorized. As well as there being more potential labels in existence, the root is
working with scripts that are each typically used by many languages, whilst many of the
languages in turn are used in multiple national administrations. Hence there will be
requirements for mutual updating on a massive scale, and contact even before labels are
reserved (Latin §8).

In this new, much larger universe of discourse, it will be more challenging to keep track of what
is available for users to apply for and registries to reserve, allocate, delegate or block, with legal
as well as technical questions to be answered. Maintenance of labels once they are activated
will be more demanding. An appropriate fee structure, as well as security procedures, will need
to be defined.

As to procedures for dispute resolution, this seems to be a point of decided interest, since it is
addressed at length in Arabic §12, Chinese §8.2 and Latin §10.

1.2.9 Conclusions
Each of the reports took the opportunity to stress particular theses identified for the relevant
scripts.

7

Chinese §10 dwells on the need for Chinese IDLs and their variants to be delegated to the same
entity both in Simplified and Traditional character versions.

Cyrillic §10 stresses the need for a conservative (perhaps even precautionary) approach to the
admission of variants. Furthermore, it urges that selective blocking (rather than joint delegation,
or some form of aliasing) is the best mode to take account of any variants which are admitted.

Greek §14 gives some explanation of the thinking behind the report’s recommendations, but
finishes with two “red lines”: the requirement that tonos accentuation and distinctive final
sigma be recognized in IDL, and the requirement that a string and all its variants be reserved for
the same registrant.

Latin §11 notes that the reception of labels in Latin script is language-dependent, but the script
itself is language-independent; it is therefore impractical to signalize any particular relation
between two code points in the Latin repertoire as variants of one another. There must
furthermore be specific linguistic justification for any Latin character whose inclusion is sought
in a label for registration.

2. Integrated Issues Report Overview
The report considers the issues associated with delegation of IDN variant TLDs. The report is organized
according to two main sets of issues: those that concern how variant TLDs are established (discussed in
section 5), and those that concern how variant TLDs are treated once established (explored in section 6.
Both sets of issues are analyzed with certain overriding considerations: the security and stability of the
DNS, and user experience. Maintaining the security and stability of the DNS is central to ICANN’s core
mission. It is of the utmost importance that the actual operation and maintenance of the DNS, on which
many services rely, are not adversely impacted by the introduction of IDN variant TLDs. Where relevant,
these issues are discussed. Secondly, user experience considerations are borne in mind throughout the
discussion, although there is a special section devoted to issues that primarily impact end users. This
would include not delegating variant TLDs in a manner that creates user vulnerabilities or a probability
of confusion, as well as an interest in functionality and efficiency for the user experience.

2.1 Objectives
As detailed in the project plan, this issues report is intended to describe each of the general and
case-specific issues to be resolved for the cases studied. It will also provide a detailed roadmap
that can be used for studying additional cases, so that the experience gained from these initial
case studies can support the efficient development of similar issues reports for additional cases.

In accordance with the scope defined for the project, the following objectives have been
established for this issues report:

- Identify the set of issues relevant across scripts
- Identify any sets of issues relevant to specific scripts

8

- Provide a brief analysis of the issues, including the benefits and risks of possible approaches
identified

- Document the levels of support for issue definition and analysis, based on collaborative
inputs from case study teams and subject matter experts

- Identify areas where further study or work are needed
- Create a “roadmap for additional cases,” i.e., steps that could be taken to perform case

studies for additional scripts

2.2 Scope
This report is designed to provide a review of issues concerning the delegation of IDN variant
TLDs. Other related issues are discussed in the report to the extent they are relevant.

It is important to note that there are a number of scripts not represented by the six case studies.
In addition, as noted by several of the teams in their reports, some of the scripts studied
represent a number of languages, and not all languages were represented on the study teams.
Accordingly, analysis of issues has not been undertaken for all possible cases and is not being
represented as comprehensive. However, it is expected that this gathering of DNS, language
expertise represents a significant percentage of the world’s Internet users, and will be an
important milestone in the work in this area.

Devising rules or proposing variant management solutions are not within the scope of this
report. In some instances, a range of possible solutions are considered and analyzed with a view
toward informing potential later phases of the project that are focused on solutions.

2.3 Guiding Principles

 The mission of ICANN is to coordinate, at the overall level, the global Internet's systems of
 unique identifiers, and in particular to ensure the stable and secure operation of the Internet's
 unique identifier systems. When considering the possible delegation of IDN variant TLDs, ICANN
 has the responsibility to undertake these activities in a manner that will not adversely affect the
 security or stability of the DNS.

At the current time, a variant management mechanism for the top level does not exist. In
considering the issues associated with developing such a mechanism, certain existing references
are used as an underlying foundation. The Unicode standard10 (currently version 6.0) provides a

10 The Unicode Standard is a character coding system designed to support the worldwide interchange, processing,
and display of the written texts of the diverse languages and technical disciplines of the modern world. See
http://unicode.org/standard/standard.html. Note that The Unicode Technical Standard is being prepared for an
update to align with Unicode 6.1. Public review and comment are invited on the drafts Issue #208: Proposed
Update UTR #36: Unicode Security Considerations (see http://www.unicode.org/review/pri208/) and Issue #209 :
Proposed Update Unicode Technical Standard #39 Unicode Security Mechanisms (see
http://www.unicode.org/review/pri209/.

9

repertoire of code points used in world scripts, including various classifications of character
properties, and normalization rules. The Internationalizing Domain Names in Applications
(IDNA) protocol (RFCs 5890-5)11 specifies rules for determining whether a code point,
considered in isolation or in context, is a candidate for inclusion in a domain name.

 It is assumed that these reference points will continue to be applicable to the DNS. In addition
 to the assumption of stable references, ICANN has also distilled from the case study team
 reports and the mission and core values of ICANN a set of guiding principles, described below,
 which has been adopted in the development of this report.

1. The root zone is a shared resource, and the management of the root zone should
accommodate, to the maximum extent possible, the needs of users of multiple global
scripts. A principle of equivalent treatment should be adhered to, avoiding undue
consideration for users of particular scripts in a space that is used by all. In addition, both
gTLDs and ccTLDs exist in the root zone and are relied upon by Internet users around the
world. While gTLDs and ccTLDs may involve different operating environments, it is critical
that a reliable user experience is produced across the TLD space. As a result, any
restrictions on (Unicode) code point repertoires for TLDs will need to be adhered to by both
ccTLDs and gTLDs.

2. A conservative approach should be adopted in the definition of variants; if necessary, a
more liberal approach may be adopted later. Given that experience in this area is limited,
and actions taken will create a precedent that cannot be undone, variant TLD labels should
be narrowly defined, and precise rules for active use of variant labels in the DNS should be
adopted. Wherever possible, instead of adding a new type of variant TLD label, an
alternative approach should be used – for example, using an existing ICANN evaluation or
objection process that delivers an appropriate way of blocking undesired TLD strings. If
there is a process already in existence that delivers a similar result to what is desired, that
process should be used rather than establishing a new type of variant label.

3. The root zone is a special case, and the approach taken for variant management in the root
need not prescribe that taken by individual TLD registries. ICANN must adopt and a
consistent policy for consideration of requests for IDN variant TLDs, and this may entail
specific criteria and rules applicable for variant strings to be allowed at the top level.
However, formulation of TLD policy often takes into account the specific user context, and
there may be corresponding reasons for different criteria or rules relating to variant label
generation and use, subject to certain minimum requirements necessary for security or

11 See http://tools.ietf.org/html/rfc5890; http://tools.ietf.org/html/rfc5891; http://tools.ietf.org/html/rfc5892;
http://tools.ietf.org/html/rfc5893; http://tools.ietf.org/html/rfc5894; http://tools.ietf.org/html/rfc5895.

10

stability reasons. Accordingly, TLD registry operators should not have an automatic
obligation to abide by all of the same variant tables and policies used at the top level.

4. User behavior can adapt as necessary to the circumstances, and thus all natural language
uses need not be reflected in TLDs. There are two important ways that this is true. First,
names in the DNS, and at the top level especially, have always been restricted. RFC 112312
notes that the top-level names "will be alphabetic," (which in the context meant “only the
ASCII characters a-z and A-Z”) and that convention has held up through the history of the
DNS. Additionally, characters that are typically used in written language (such as <?> or <+>)
have always been excluded from the traditional letters, digits, hyphen (“LDH”) range
normally used in DNS labels. Just as these restrictions prevent the expression of many
useful ASCII labels at the top level, the internationalization of the rules for the top level
should limit its scope to the minimum necessary, and not to the maximum possible.
Secondly, it is not reasonable to suppose that a naive user will approach the DNS with only
the rules of his or her natural language in mind. A general principle of machine usage is that
there are special words and conventions for interacting with the machine. While reasonable
approximations of natural language usage are desired in any approach, users are not
dependent on the ability to use the full natural language without restrictions and should be
able to accommodate certain limitations where necessary.

3. Discussion of Issues: Possible Types of Variant Labels
A review of the case study team reports yielded a universe of possible variant types detailed as
discussed in this section. This chart attempts to place all “variant issues” found in the six different
scripts within a framework of abstract types. As such, it may be useful as a first grouping of the issues,
suggesting which may yield to common approaches, even though the specific variant issues which crop
up in the different scripts may appear very different.

Each of the headings is here discussed with examples, as a further attempt at clarification.

The key role played by the concept of “Abstract Characters” in this taxonomy may entail some
difficulties of interpretation. The assignment of code points and representative glyphs is definite within
Unicode, but the recognition of abstract characters is implicit (and stated, if at all, only in the word
description of the character). In fact, its identity depends on linguistic analyses of all the languages in
question. Essentially, a linguistic test of whether there is one or more abstract character depends on
whether there is a discernible contrast within a language.

The presumption is that, within a language, every abstract character corresponds to a single phoneme
or grapheme (or in UniHan a single sememe, i.e. an interpretable meaning, usually with determinate
phonic pronunciations). However, although a single character may be consistent within a language, as

12 http://www.ietf.org/rfc/rfc1123.txt

11

between languages it may represent very different phonemes, graphemes and sememes. [Consider, e.g.,
“a” in English and Spanish spelling, pronounced very differently; standard and swash kaf in Sindhi and
Arabic, which marks a linguistic contrast in one language but is stylistic in the other; and as a
representative Chinese character, 人 (U+4EBA) has a basic meaning ‘human being’, but in Chinese is
pronounced rén and in Japanese jin, nin, hito etc.; each language then uses it with different (but
overlapping) combinatory properties.]

Nevertheless, “abstract character” is a concept that is needed and is reasonably clear within a given
language, giving a sense of an underlying unity in cases where code points or glyphs seem to have been
multiplied beyond necessity, in the process of defining Unicode.

The references used in the table below are to the corresponding section in that team’s case study
report.

12

 Arabic Chinese Cyrillic Devanagari Greek Latin

I. Character substitutability

A. Intra-script

1. Same abstract character

1a. Abstract characters that have more than one encoding

Identical:
decomposables, esp.
if not normalized
(6.1)

6.1 Appendix A.2
(A.2.1 – A.2.2)

Non-identical:
Generic variant
characters (5)

Identical:
decomposables, esp.
if not normalized
(3.8)

(Discussed at 6.5:
Precomposed
characters)

(Discussed at 6.4:
decorative and
contrastive variants)

1b. Apparently the same abstract character in some contexts

KAF Group, HEH
Group, and YEH
Group (6.1.abc),
MARBUTA Group
(6.1g) HEH with
HAMZA Group
(6.1h) NOON Group
(6.1j); KAF Group,
YEH Group, YEH
with HAMZA Group;
variants of dot
orientation (all in 6.2)

6.1 a thru k –
Appendix A.1

Correct spelling of
inflected forms in
Nepali requires use of
ZWNJ (4.3.2)

SIGMA and FINAL
SIGMA (5, 12)

SMALLER
TURNED E
(U+01DD), SMALL
LETTER SCHWA
(U+0259) (6.2)

13

 Arabic Chinese Cyrillic Devanagari Greek Latin

2. Different abstract characters

2a. Different abstract characters interchangeable for users

6.3 a thru d

vowels with/without
HAMZA (U+0621),
All forms of ALEF
(e.g., U+0627)
with/without
composed form
(6.3ab); TEH
MARBUTA
(U+0629) and HEH
(U+0647) (6.3c);
Arabic-Indic and
extended Arabic-
Indic digits (6.3d)

Simplified characters
(SC) / Traditional
characters (TC) (5)

Japanese-only Kanji
(6.3)

(Discussed at 6.6:
combining marks)

2b. Simple visual confusability

Non-identical:
GHAIN/FEH Group,
QAF/AIN with 2
DOTS ABOVE
Group,
AIN/FEH/QAF with
3 DOTS ABOVE

GHE/GHE (U+0433)
WITH UPTURN
(U+0491) in
Ukrainian (3.2); Old
Letters, e.g.,
YAT/SEMISOFT
SIGN (U+048C /
U+048D) (3.4); ZE
(U+0437) / DIGIT

GHA (U+0918) /
DHA (U+0927) /
BHA (U+092D) /
MA (U+092E) etc
(3.2.1 + Appx III);
composite characters
DGA/DNA/DRA etc.
(3.2.2 + Appx IV);
Potential mistaken

(Discussed at 6.7:
Punctuation: Latin
characters confusable
with APOSTROPHE)

14

 Arabic Chinese Cyrillic Devanagari Greek Latin

Group (6.2)

6.2 Appendix B

THREE (U+0033)
(3.7); various forms
of GHE, KA and EN
(e.g., U+0433, 0491,
0493, U+043A,049B,
049D, 04A3, 04A5)
(3.9); Appx I passim

characters due to
rendering errors of
poor font design
(3.3.1)

2c. Compatibility mappings

Rarely used
character/sequence of
characters, e.g., EN
WITH HOOK
(U+04C7 / U+04C8)
/EN + GHE
(U+043D U+0433)
(3.5); C WITH
ACUTE (U+0107)/ C
+ J in Montenegrin
(U+0441 U+0301)
(9.1)

(Discussed for
Swedish and German
umlaut in 6.3)

3. Character substitutability dependent on the string

Identical: ZWNJ/zero
(5.21)

EYELASH RA in
Nepali represents a
different phoneme
from RA, and is
currently only rep’d
by combination of
RA with ZWJ
(U+0930 U+094D

15

 Arabic Chinese Cyrillic Devanagari Greek Latin

U+200D) (4.3.1);
Homophonous
spellings (4.2)

4. Upper/lower case and underspecified
information

Optional diacritics
(notably vowels)
(6.4)

Instances of one-for-
many substitution of
SC for TC, often
context dependent
(2.1 final para.)

IE/IO in Russian
(3.1); SMALL
LETTER I WITH
GRAVE (3.3);

TONOS may be
absent (11)

Case folding (6.3)

(Discussed at 6.7:
Punctuation: Latin
characters correctly
substituted for
APOSTROPHE)

5. Improper characters
APOSTROPHE in
Ukrainian (3.6)

MODIFIER LETTER
APOSTROPHE
(U+02BC) / zero in
Boro/Dogri/ Maithili
languages (3.4)

B. Inter-script

Especially of concern
for WHOLE-SCRIPT
CONFUSABLE
strings with Greek
and Latin (4)

Especially of concern
for WHOLE-SCRIPT
CONFUSABLE
strings with other
Brahmi scripts, e.g.
Gujarati (3.5, 4.1)

Especially of concern
for WHOLE-SCRIPT
CONFUSABLE
strings with Cyrillic
and Latin

(Discussed at 6.1, 7
and 8.)

Especially of concern
for WHOLE-SCRIPT
CONFUSABLE
strings with Greek
and Cyrillic

II. Linguistic variants

16

 Arabic Chinese Cyrillic Devanagari Greek Latin

Equivalence between
corresponding words
in Dimotiki and
Katharevousa dialects
(13)

17

I. Character substitutability

The variant issues in Section I are all based on indeterminacy in the representation of single characters,
not strings.

Unicode typically assigns a unique code point to what it recognizes as an “abstract character” (i.e., a unit
of information used for the organization, control, or representation of textual data), and this
combination of code point and character in turn corresponds at a single glyph in the abstract. Here we
consider cases where this fails for some reason.

A. Intra-script

Here we only consider variant issues which show up within the glyphs and rendering of a given script.
However, the confusions often show up primarily because we are comparing the differing uses of a
script (and glyphs with in it) made by different languages.

1. Same abstract character

1a. Abstract characters that have more than one encoding

A clear example that many composite characters (e.g., vowels and consonant signs that carry diacritic
marks, such as <é>, <ā>, < ç>, <ṭ>) have more than one representation as code points, namely, as pre-
composed wholes, and as the simple letter with a separate combining diacritic. This occurs in Arabic,
Cyrillic and Latin. Many of these cases (including some that were raised in the case study reports) do
not bear on IDNs, because of the requirements for what qualifies to be a code point in a U-label. In
particular, where there are different standard ways of encoding the same abstract character as
precomposed and decomposed forms, normalization will render them all the same. There are
nevertheless some cases where normalization does not completely cover the range of potential inputs.
(See [case study refs])

A rarer case is where the glyphs assigned to distinct code points turn out to be indiscernible. It is unclear
in these cases whether there is more than one abstract character involved: in any case, the variants do
not contrast with one another, and it is a matter of indifference, in ordinary use, which one is intended.
There is, however, a security danger comes from code points which are distinct, but invisibly so.)

This is the case of Chinese generic variant characters (often resulting from the unification of sources to
create UniHan), but also of the two ways of expressing ‘turned e’ or ‘schwa’ in Latin script.

The decorated characters in Latin provide many examples of distinct (sets of) code points which
represent the same characters, although the Latin report (with one exception) recommends banning
them all from use in TLD labels.

1b. Apparently the same abstract character in some contexts

18

These are like the cases in 1a, but differ in that the contrasting code points only have differing glyphs in
some contexts.

 This is frequent in the languages written in Arabic script, where the different glyphs may represent what
are historically different ways of writing a single given character (but have been given varying code
points in Unicode).

Conversely, the different forms of an Arabic character which are seen at different word-positions (initial,
medial, final and isolated) are all generated by renderings of the same character (at a single code point).
It will be difficult, therefore, to relate them as variant characters, since they have no identity as separate
characters.

In Greek, the positional form of lower-case s (sigma) occurring finally in a string has been assigned a
separate code point (U+03C2 �, not U+03C3 σ). Nonetheless, it clearly represents the same conceptual
character, and in upper case <Σ> shows no variation.)

2. Different abstract characters

These examples are cases where there are two characters, and two code points, but they are treated as
variant characters for a particular reason.

2a. Different abstract characters interchangeable for users

The classic case is the Chinese equivalence between Simplified and Traditional characters. These are
defined as quite separate code points and hence (prima facie) separate characters. Yet in terms of their
contribution to writing particular words, there is no difference between the members of a
corresponding Simplified-Traditional pair of characters. The only way to make them contrast is to talk
about the actual form or identity of the characters themselves, rather than what they mean or how they
sound.

In Arabic script, many combinations of alif and hamza with vowels are assigned their own separate code
points: they are distinct from those vowels without alif and hamza, but the conventions of the Arabic
language (and some other languages’) spellings allow the forms with and without alif/hamza to be
equivalent. In other languages that use Arabic script, this equivalence is not present.

A very different instance is the treatment in China of Japanese TLDs which are in kanji (Japanese
characters) only. Although no simplified characters can be involved here, it is suggested that – to
prevent confusion among Chinese users – use of any characters which look like Chinese simplified
should trigger in the root the blocking of TLDs which differ only by using their corresponding Traditional
equivalents.

2b. Simple visual confusability

19

These cases are self-explanatory. Glyphs are not sufficiently distinct to represent reliably their
associated code points (nor abstract characters).

2c. Compatibility mappings

By this is meant cases where, within a particular language’s spelling system, a digraph or trigraph
(sequence of two or three glyphs) is taken as a conventional equivalent for another, usually rather rare
and distinctive, glyph. If any of these equivalences are directly represented in the root, the effect will be
to impose this equivalence on all languages which use the given script.

3. Character substitutability dependent on the string

There are certain characters (notably ZWNJ and ZWJ – and since their effects are indirect, they may be
better considered as control characters) which may, under the rules of the IDNA Protocol, only be
inserted when in positions in a string that trigger a particular effect.

In Nepali: a. to show “eyelash ra”, a separate character from ra, not represented by a separate code
point (rendered through the insertion of ZWJ); or b. to show presence of a morpheme-boundary
(rendered through the insertion of ZWNJ).

Syllable-final nasal (anusvara) in Hindi representing a nasal consonant before a following syllable-initial
consonant (e.g. writing ambā, hindī gaɳgā as “ãbā, hĩdī, gaga,” as is normal in Devanagari). These are the
“homophonous spellings.”

4. Upper/lower case and underspecified information

While DNS labels are octets and can hold any octet desired, they are defined in RFCs 103413 and 103514
such that they treat ASCII in a special way. While the DNS preserves ASCII case differences, the
difference is not considered in the matching rules. For instance, the label “example” in the DNS is
supposed to be preserved just as entered in the authoritative zone file during transmission and caching,
and also the label “ExAmple” is also supposed to be so preserved. These two labels, however, could not
both be in the same zone for the same resource record, because for the purposes of matching they are
the same.

The IDNA Protocol uses a different rule: a code point must be stable under NFKC and case folding
operations to be a valid code point in the protocol (see RFC 589215). Therefore, upper-case characters in
scripts that use them (Latin, Greek, and Cyrillic) are not allowed in U-labels – even if the character would
have the difference preserved in a traditional LDH label (to use an artificial example from above, the

13 http://www.ietf.org/rfc/rfc1034.txt

14 http://www.ietf.org/rfc/rfc1035.txt

15 http://tools.ietf.org/html/rfc5892

20

string “ExAmplé” is not a U-label, because of the two upper-case characters E and A. This means that a
distinction is present in usual Latin/Greek/Cyrillic text is routinely neutralized in U-labels and hence IDN
TLDs.

5. Improper characters

There is a requirement across languages for characters which are in a block of code points distinct from
those reserved for the relevant scripts: e.g. the apostrophe character used in Cyrillic for Ukrainian and
Belarusian; the apostrophe character used in Devanagari for Boro, Dogri and Maithili.

Although these characters are not variants in themselves, their presence or absence in the spelling of
specific names and words is not straightforward. Because of the characters' status outside the regular
code block for the script, the prospects for their routine use are unclear. If both presence and absence
of these characters are ruled as acceptable spellings in TLDs, names and words where these characters
are used will become thereby open to use as variant labels.

B. Inter-script

If labels are to be restricted to a single script, the only case of this is the whole-script confusable case. It
is expected that there will be mechanisms to detect these, and block them where necessary, but no
variant cases will arise. There is a bigger issue to consider if labels are to be constructed out of sets of
code points not restricted to those sharing a single script property; see the discussion in section 4.1 for
some alternatives.

 II. Linguistic variants

This raises a different set of issues from the Character Substitutability cases above. Potential variants are
whole strings (usually words) rather than single characters within a string.

4. Discussion of Issues: Establishing Variant Labels
The root is a shared resource, and that means that ICANN cannot in principle privilege one group of
language users over another in the administration of the root zone. Accommodating everyone is
necessarily complicated. However, it is necessary to have an agreed and accepted mechanism for
defining code point variants for the root that takes into account the needs of the language communities.
ICANN must have a way to validate IDN TLD variants when submitted, and to validate all IDN TLDs
requested for variants and variant conflicts.

Identification of an appropriate authority for code point repertoires (script tables) for TLDs is a difficult
undertaking. To the maximum extent possible, the relevant language communities need to agree on a
shared code point repertoire. It is not clear on what authority ICANN would rest its claim to being able
to decide between different code point repertoires in the event of a dispute. If, on the other hand, no
dispute exists, then it does not seem that there would be different repertoires submitted. It would be

21

better for all to co-ordinate a single repertoire for the code points in question. Ideally there should be
no advantage in creating subtly different repertoires for code points allowed in TLDs.

4.1 Options for a Label Generation Policy
It appears that there are four broad methods for building a Label Generation Policy for the root
zone. In general, only one of these strategies can be adopted, although any of them could be
modified somewhat in the particulars.

1. Complete generation for every Script Table to be used

The first approach is to use the Unicode Script Tables, and build a full policy for every code
point in every Script Table that is to be used. (A policy would not be needed for scripts that
are not going to be supported in the root zone, though of course it would be necessary to
build such a policy on the introduction of a new script.) This would likely require the
compilation of complete lists from different language communities using the given scripts,
and also asking those communities to specify the variant rules for the code points. The
committees that come together for a given script might be called the “script expert panel.”
In the end, a single Label Generation Policy would be merged from each of the authoritative
lists from different script expert panels.

Using this method, there is some question about what to do about code points that are
needed by some language, but that are not included in the script the panel is considering.
For instance, several different languages may depend on code points in category Common
or Inherited; in such cases, it is not clear which script expert panel should be consulted.
Along the same lines, dealing with languages written in more than one script (as e.g.
Japanese is) could be extremely tricky. Since the deliberation is at the level of a script, it
would seem necessary to require that labels always be in exactly one script, with exceptions
to be worked out where need be (though it is not clear on what basis the exceptions would
be determined).

It is also not clear what to do in case a script expert panel cannot come to consensus and
deliver the subset of the Label Generation Policy for the Script Table in question. If
consensus were required, it would permit a single user of the script to block registrations for
everyone. While we do not have examples of such fractiousness in our work so far, how
languages are written is often an intensely (politically) fraught question.

Three of the case study teams noted that they did not have complete expertise in at least
some languages that use the script under consideration, and it is not clear how teams could
be constructed that would ensure such expertise for every language that uses a given Script
Table. It would appear that the script teams that studied the different scripts are the best
examples of expert teams ever assembled on this topic, and if those teams were unable to
deal with some of the languages using the script, prospects for future teams that will be

22

more comprehensive may not be good. It might be that such an effort could not proceed on
a volunteer basis, but would need paid staff. There is always the possibility of overlooking
some language that uses the Script Table, also, but perhaps with sufficient guidance from
linguistic experts such an eventuality could be avoided.

In the event Unicode added or removed a code point from a script, it would be necessary
immediately to convene a new script expert panel to decide what to do about the new code
point. It would be critical to prevent any registration with that code point until the panel
had ruled, and probably necessary to have grandfathering rules for handling already-
registered labels. If a code point changed scripts -- unlikely but not impossible under the
Unicode rules -- then a similar immediate convention of the expert script panel would be
needed. It is worth noting that the most common code points available under IDNA2008
have been stable for a very long time, and are extremely unlikely to change in this way; all
the examples are likely to be very rare characters. (To all but eliminate this risk, it might be
worth adopting a stability criterion so that a code point is ineligible for inclusion in the Label
Generation Policy unless it has been completely stable in several Unicode iterations.)

2. Create policies only for code points actually requested in a Script Table

A second approach is to again depend on the Unicode Script Tables, but to build up the set
of permitted code points in the Label Generation Policy on the basis of submissions by
would-be users of the code point. In this case, the same expert team as above would work
on the script, but it would not have to complete a policy for every code point in the script;
instead, it would merely have to complete a policy for every code point submitted in a
request. Would-be users of the code points would need to make a request in advance of
the script expert panel’s convening.

A user desiring to use a code point would need to ensure that it was already included in the
Label Generation Policy. A code point not so included would be excluded from registration
in the zone until the script expert panel could review it and add it to the Label Generation
Policy (along with any rules defining variant behavior).

This mechanism has most of the disadvantages and advantages of the approach outlined in
the previous section. Using this method, however, no decision at all needs to be taken
about code points nobody has requested for registration (or for handling under variant
rules), which means that there is no difficulty at the outset in dealing with code points used
by language communities not engaged with ICANN. It also reduces the chances of serious
issues arising from changes in Unicode, because code points that are likely to have any
changes are also the ones least likely to be in use. On the other hand, it requires a more or
less permanent standing committee of script experts for every script reflected in the root
zone. The Label Generation Policy is more likely to experience some instability under this
approach than under the first.

23

Exactly how the expert panel would be retained and how it would be compensated if it
needed to do work present a related set of issues. There are other mechanisms within
ICANN for other issues where expert panels are occasionally convened or consulted, and
those mechanisms might provide models for how to arrange this effort. It would be critical
to ensure that any panel included expertise both on all of the languages affected by the
Script Table, and expertise on the operation of DNS and IDNA.

3. Create policies for arbitrary lists of code points

Because of the possible difficulties with “one Script Table” policies, it might be desirable
instead to permit language communities to specify the code points they want to use to write
their language. Assuming the listed code points were PVALID or CONTEXTO or CONTEXTJ
and otherwise conformed to root-zone policies, these code points and associated rules
could be combined into a single Label Generation Policy.

In order to generate the initial lists and rules, bodies similar to the script expert panels
described above would need to be convened. These might be organized around broad
script categories (as the Variant Issues Project case study teams were), around a specific
language or multiple languages, or even across linguistic lines in the event that seemed
desirable (e.g., to address cross-script Latin/Greek/Cyrillic issues). Panels would work on
code points with which they were familiar, and would usually need representatives from all
the relevant language communities. The set of code points that they would generate could
be termed a “repertoire.” As in the previous section, code points that did not seem useful
to the panel, or which nobody understood, could be ignored (and disallowed for registration
until a policy were developed to address those code points).

It would be advisable for some initial panels to be convened at the outset, to deal with
those code points judged most likely to be desired (determined for example by a survey of
existing and prospective TLD operators). Each panel would prepare a repertoire and an
associated set of rules for any code point in the repertoire that was supposed to generate
variants. The different initial repertoires would be combined into a single Label Generation
Policy, with conflicts in any variant rules always being resolved by a “Block” rule.

The individual repertoires would be associated with some identifier (such as a Language
Tag), and would be registered with IANA so that they could be referred to later. Subsequent
IDNA registrations in the root zone would need to refer to a Language Tag in the IANA
registry, and all and only the code points from the relevant repertoire would be permitted in
the label.

If a suitable existing repertoire were not available, then those wishing to adjust an existing
repertoire, or to create a new one, would need to request a new panel to create a suitable
repertoire. The mechanisms for setting up and maintaining such a panel would be similar to
those outlined in the previous section. It would be important, however, to create a process

24

that tended to discourage the creation of new repertoires or many modifications to existing
repertoires. The reason for this is the same as the reasoning behind creating variants in the
first place: if the goal is to ensure that users are not surprised, then rules that are different
depending on when a name was added to the root zone would violate that principle of least
surprise. Once a Label Generation Policy permits a code point or establishes a variant rule,
it should be difficult (although not impossible) to change that.

A notable advantage of this approach is that it avoids the somewhat artificial link between
Unicode Script Tables and any given language. In addition, because it does not require any
treatment of code points for which there is no demand until that demand appears, it avoids
having to address code points for which the expertise is not available. A significant
disadvantage to this approach is that it relies less on existing attributes (such as Unicode
script properties) and relies more on expert groups to make findings about the code points.
It also has the potential for “deadlock” and competing repertoires where different groups of
users cannot come to agreement about how to deal with a subset of code points.

4. Build up repertoires ad hoc

The approach outlined above might be altered to allow anyone to create and register a
repertoire (instead of requiring an expert panel to create one). In this case, instead of
ICANN selecting an expert group, repertoires would be created by interested parties,
organized according to whatever principle they liked. The combination of these repertoires
into a single Label Generation Policy would still need rules in order to deal with conflicts; in
general, the rules should always pick the most conservative action, in order to avoid
controversial or possibly harmful entries in the root zone.

The principal advantage of this approach is that it takes ICANN completely out of the
business of deciding whose expertise counts with respect to a language or script. A
significant disadvantage of this approach is that it is subject to denial of service: someone
who is opposed to variants in principle could always create a conflicting rule, and the
conflict-resolution mechanism (in order to do the most conservative thing) would therefore
tend to prevent any variant labels from being Activated. Moreover, because this approach
tends to encourage more innovative repertoires and associated rules (as there is little cost
to adding one), it is more likely to lead to instability in the Label Generation Policy.

4.2 Distinguishing Variant Labels and Visual Similarity
Labels that are visually confusable, as noted by Unicode,16 refer to two different strings of
Unicode characters whose appearance in common fonts in small sizes at typical screen
resolutions is sufficiently close that people easily mistake one for the other. “Small sizes at

16 http://unicode.org/reports/tr36/

25

screen resolutions” means fonts whose ascent plus descent is from 9 to 12 pixels for most
scripts, and somewhat larger for scripts, such as Japanese, where the users typically have larger
sizes.

To further explore variant versus visual similarity issues, the following analysis can be pursued
using two parameters:

a) Linguistic entity (same, different), and

b) Shape (same, similar, and different).

In this context, a “linguistic entity” refers to a character (i.e., one or more code points) that in
some language that uses the script is non-distinct (i.e. substitutable in some word without
change in the word’s identity).

This covers (in the context of the broadly alphabetic scripts such as Arabic, Cyrillic, Devanagari,
Greek, or Latin), code points which represent the same letter, and (in the context of ideographic
scripts such as Chinese), code points which represent a character with the same pronunciation
and meaning. Specifically, Simplified and Traditional characters which are equivalent in writing
Chinese represent the same linguistic entity.

The analysis produces the following six categories possible for a given IDN TLD label:

1. Same linguistic entity, same shape
2. Same linguistic entity, similar shape
3. Same linguistic entity, different shape
4. Different linguistic entity, same shape
5. Different linguistic entity, similar shape
6. Different linguistic entity, different shape

Table 1 contains examples from within different scripts for each of these categories.

26

 Parameter Arabic Examples Devanagari Examples Chinese Examples

1 Same linguistic
entity

Same shape

 ه , ه

0647, 06BE

None17 unless the eyelash ra is
considered

U+0930
U+094D
U+200D

U+0931
U+094D

黄黃 U+9EC4, U+9EC3

2 Same linguistic
entity

Similar shape

 ی ,ى

0649, 06CC

Not possible in Devanagari and is possible
only if cross-script similarities are
permissible.

4.1. 0f Devanagari report

户 戶 U+6237, U+6236

3 Same linguistic
entity

Different shape

 all voiced velar),گ ,ګ
stops)

06AB, 06AF

ऍ 18

U+090D U+0972

学 學 U+5B66, U+5B78

17 This comprises Nukta “normalization” already handled by IDNA 2008. The case of eyelash ra also figures here cf. 4.3.1.. of the report. Both these cases are
not listed here since the first is handled by IDNA and in the second case ZWJ is not permissible for GTLD’s for a single string.

18 can be generated out as a single character and also as a combination of अ+ZWJ+◌ ॅi.e. U+0905 U+200D U+0945 in which case it would also fit in Category 1

27

 Parameter Arabic Examples Devanagari Examples Chinese Examples

4 Different
linguistic entity

Same shape

initial and medial
positions of

 ڧ ,ف

0641, 06A7

ख रव

U+0916, U+0930 U+0935

士 土 U+58EB, U+571F

5 Different
linguistic entity

Similar shape

 ۍ ی

06CC, 06CD

At single character level

ध,घ : U+0927, U+0918

द्ग द्न �

U+0926 U+094D U+0917

U+0926 U+094D U+0928

U+0926 U+094D U+0930

力 刀 U+529B, U+5200

6 Different
linguistic entity

Different shape

most of the alphabet most of the alphabet excluding the types
above

Most pairs of ideograms

Table 1: Parametric Analysis based on linguistic entity and shape and examples

28

From this exercise, it is clear that category 6 is not relevant in the discussion because it
represents both a different linguistic entity, and a different shape. If there are confusability
issues, they can be addressed by current processes.

It is also clear from the analysis that there are two types of user expectations: for categories 1, 2
and 3, different code points are linguistically the same unit, and thus from a user perspective,
they could be somehow equivalent. Categories 4 and 5 are different linguistic units, so there is
no user expectation that they be equivalent; however, strings that are presented as candidate
alternatives in this category could be blocked in the root zone for security reasons.

To highlight this distinction, we define two categories: activatable variants, and block-only variants.

• Activatable variants that would include categories 1, 2, and 3 below. These categories are
calling for a linguistic relation between the characters that makes them equivalent somehow.
These categories of variants can be blocked, reserved, allocated, delegated, activated.

• Block-only variants would be to include categories 4 and 5 which would be block-only variants
(variants that can only be blocked, not even reserved).

It is clear that today there is no process to treat activatable variant TLDs, therefore a new process needs
to be developed.

To treat blocked variants, there are several options:

Option 1: Define a new process to treat blocked variants.

Option 2: Enhance the string similarity review process to handle blocked variants.

Discussion:

1) The string similarity review process is established with the objective to prevent user confusion
and loss of confidence in the DNS resulting from delegation of many similar strings. Note,
according to AGB, “Similar” is defined as strings so similar that they create a probability of user
confusion if more than one of the strings is delegated into the root zone.

2) From the discussions, it seems that in some script community, it is possible to find an acceptable
table that would be able to generate blocked variants deterministically.

3) If 2) is possible, it seems that the string similarity review can be improved to take into account
the tables.

4.3 Cross-Script Visual Similarity
Cross-script visual similarity is also possible, especially among Cyrillic, Greek and Latin scripts,
but also as between Devanagari and closely related Brahmi scripts (e.g. Bangla, Gurmukhi). It is
possible for two candidate U-labels to appear to be the same in different scripts. Even excluding

29

Unicode properties like Common and Inherited, it is possible to create two IDNA-valid strings in
two different scripts where competent users of each script are likely to regard the two strings as
the same one. This issue is highlighted in some team reports as "whole-script confusables,”
which is also what a similar phenomenon is called by Unicode.

There are two possible ways to address this problem during registration of TLDs in the root. The
first is to treat this as a straightforward matter of string similarity; in that case, the issue is
outside the matter of IDN variants, and it can be treated according to other policies. The second
way is to treat these candidate strings as variant TLD labels. If the latter strategy is to be
adopted, then any mechanism for generating variant labels will, at minimum, need to be able to
detect and correctly block or reserve such whole-script cases. Note that, because this is an issue
of all the component code points being confusable with one another, it is distinguished from the
whole string issues discussed in section 4.4 below.

4.4 Whole String Issues
As opposed to character-level alternatives (in which the locus of difference lies in individual
characters within a string), whole-string level alternatives would set whole strings (potential
DNS labels) in contrast. In this section discusses the issues concerning recognition of alternatives
of this kind as variants.

As defined above, however, whole-string alternatives may be divided again into:

a. string alternatives proper, where whole strings of characters are transformed or related by
some formal process. Effectively, these include all potential transformations of whole
strings, if they can be performed algorithmically. Examples include:

1. Transliterated strings (e.g. Ευαγγελίa (Greek) and Euaggelía)
2. Whole-script confusable strings (e.g., peace (Cyrillic: U+0440, U+0435, U+0430,

U+0441, U+0435) and peace (Latin: U+0070, U+0065, U+0061, U+0063, U+0065)
3. Inverted strings (e.g. Yentob and Botney)
4. Alphabetically shifted strings (e.g. IBM and HAL)

b. linguistic alternatives, where the transformation appeals to some part of the rule-set of a
language, whether its orthography, its phonology, its grammar, or its lexicon. Examples of
what might be considered linguistic alternatives include:

1. Transcriptions (e.g., Ευαγγελίa (Greek) and Evangelia), 网络 (Simplified Chinese) and

wang luo (Pinyin transcription), which means network in English), which involve
constructive use of another language’s phonology and orthography to reconstruct
the effect of an expression’s pronunciation in a given language.

30

2. Homophonic strings within a language’s spelling system (e.g., English too and two);
this will include different spellings of the same word (lexeme) in the same language
and script (e.g., in English: color and colour); in the extreme case, this may extend to
strings representing the same word in the scripts of a multi-script language (e.g., in
Japanese: ほんだ (Hiragana), ホンダ (Katakana), 本田 (Kanji), Honda (Romaji ~
Latin)).

3. Corresponding terms in different dialects of the same language (e.g. Ευαγγέλιος
(Greek) and Βαγγέλης, which are accepted forms of what was (historically) the same
name (in Katharevousa and Dimotiki respectively); diaper (US English) and nappy
(UK/AU English).

4. Synonyms within a language (e.g., in English: car and automobile).

5. Different identifying expressions within a language (often dependent for their
interpretation on conventions, or other shared information): these may be personal
(e.g. Elizabeth II, The Queen, the present queen, the Queen of England, the Head of
the Commonwealth etc.), geographic (e.g., in English: New York City, NYC, New York
New York, the Big Apple etc.), or in any other field.

6. Translated strings and inter-linguistic correspondences: representations of the same
concept/notion in two languages (e.g., green (English) and vert (French))

While the formal rules that define string alternatives proper may be represented as well-defined
automata, this is not possible for linguistic alternatives, since generalizations within and
between languages are subject to arbitrary exceptions, as well as being hard to define formally,
at any level of abstractness.

In this breakdown, it becomes clear that whole-string alternatives are (potentially) the result of
any formal transformation, including any form of encipherment, with little or no relation to user
experience (e.g., inverted strings, alphabetically shifted strings). On the other hand, linguistic
variant rules are never exhaustively and formally predictable, being dependent on equivalences
made at various levels (from orthography through grammar and meaning to irony) by users of a
given language.

Given the analysis of linguistic alternatives above, it is clear that some people might want some
of them to be considered variant labels. Writing system and spelling reforms had implications
for languages that have at times been written in Cyrillic and sometimes also either Arabic script
or Latin script. Even English has undergone significant spelling reforms, such that some words
can be spelled more than one way (e.g. 'color' and 'colour').

One of these types of alternatives, "Corresponding terms in different dialects of the same
language," was recommended for consideration by the Greek case study team. The Greek case

31

study team report recommended that Katharévousa strings and Dimotikí strings be treated as
variants to one another, such that the registration of one such string should cause the
corresponding string to be Blocked.

The Greek case study team report noted:

Alternative, same[-]meaning words, if the domain consists of words[,] are to be
disallowed. This rule is especially put in place to deal with words in “Katharevousa”
and “Dimotiki”. Dimotiki is the contemporary Greek language, where Katharevousa
was in use before 1976. However, many word types from Katharevousa are still in
use in Dimotiki and the user should be protected of confusability issues between
these same meaning words. For example “Πειραιάς” and “Πειραιεύς” are two
names of the same city in Greece, respectively in Dimotiki and Katharevousa – The
applicant will only choose to register one of these and the other one should be
excluded of registration. The team recognizes the difficulties this procedure presents
for automated systems, however, since TLD registrations are not expected to be of
great volume this rule could be implemented with relatively low cost for ICANN. (p.14)

The first sentence of this text suggests that the Greek Case Study group has not made a
distinction between the requested inter-dialectal equivalence of words and a more general
synonymy, which would be highly subjective in detailed application. Since the recommendation
is only for the inter-dialectal equivalence, this may not matter. However, even if check-lists of
all the relevant words and names are available, the relationship is less neat than may be
assumed.

Although Katharevousa and Dimotiki are largely related formally, this is overall a complex and
sometimes unruly linguistic relationship.

For example there is a general principle (among many other equivalence rules) that ancient
(Katharevousa) names ending in -εύς have a modern (Dimotiki) form ending in –εάς or –ιάς: e.g.
Ατρεύς Ατρέας: βασιλεύς βασιλιάς: Ζεύς Δίας: Ιδομενεύς Ιδομενέας: Πειραιεύς Πειραιάς etc.
The list is long, and not clearly finite. But at the same time the equivalence, in the most salient
cases at least, is not exact, but highly context- and referent-dependent: so Ατρεύς not Ατρέας is
the asteroid Atreus, whereas either can refer to the mythical hero of that name. On the other
hand, Ζεύς and Δίας can both refer to the god Zeus, but only Δίας applies to the planet Jupiter. If
the Dimotiki and Katherevusa forms were to be judged equivalent in TLDs, implementers would
find it necessary to refer to a specific fixed list of names (perhaps even excluding Ατρεύς and
Ατρέας, Ζεύς and Δίας). This might have the effect that if new names in -εύς or –εάς or –ιάς
were invented, they would not automatically get a variant label. On the other hand, native
speakers of Greek would largely be able to predict a possible Katharevousa form, when
presented with a new Dimotiki example ending in –εάς or –ιάς.

A further problem stems from the need to agree a specific fixed list, not only of names, but also
of every word in the Greek language (onomasticon), and specifically one which specified the

32

Dimotiki and Katharevusa equivalent for each headword (lexicon). Besides the need to maintain
both of these, there is the further complication that Greek is a highly inflected language, and
policies would need to be defined on which precise parts of each word’s alternations would be
recognized.

The aforementioned paragraph from the Greek team report is requesting to “exclude from
registration” the second alternative string, i.e., blocking it. The gTLD Applicant Guidebook
already defines two processes that could take care of the issue in a similar way without the need
to establish such alternatives as variant labels. The String Similarity review described in Module
2 compares any two applied-for gTLD strings for visual similarity. If the strings were found to be
confusingly similar, they would be placed in contention sets for later evaluation and resolution.
Additionally, the review compares each applied-for gTLD string against existing TLDs. If the
applied-for gTLD string failed the String Similarity review due to similarity to an existing TLD, the
application would not pass the Initial Evaluation.

Secondly, Module 3 describes the public objection process, in which string confusion is one
possible grounds for a formal objection to be filed to a gTLD application. Such confusion is not
limited to visual similarity. Rather, confusion based on any type of similarity (including visual,
aural, or similarity of meaning) may be a basis for an objection. The use of any of these two
processes could yield the outcome requested by the Greek case study report for the
Dimotiki/Katharevousa issue.

On the more general topic, as noted above, these sorts of linguistic alternatives are not
amenable to algorithmic treatment, because the linguistic principles that cause them do not
usually exhibit complete regularity. In order to produce a general solution to any general case
of linguistic alternatives (even in a single language), it would be necessary to generate (in
advance) a dictionary or set of dictionaries that would govern the handling of submitted strings;
this would require the engagement of relevant expertise for each language with linguistic
alternatives. Presumably, the dictionaries would need to be reconciled with one another, in
order to ensure that any possible conflicts would be dealt with.

Since there is no requirement that DNS labels actually be words, submitted candidate labels
would need to be checked to see whether they matched anything in the relevant dictionary or
dictionaries, probably including checking for substrings in the dictionaries and substrings in the
submitted candidate label. In the event a match was detected, then zone policy would apply as
to what to do with the resulting matching label (e.g., to Block it, Reserve it, or Activate it).

It would be necessary to develop a policy for maintaining the dictionaries. It is not clear how
ICANN could make effective exclusion rules permitting one type of linguistic alternative to be
treated as variant, but another not to be. It is also not clear that the system would be subject to
practical automation, given the very large number of potential combinations and the likely
requirement to perform substring matching. It would be necessary to formulate a policy that

33

could accommodate future changes to dictionaries, and to formulate a policy that
accommodated such changes as to create a conflict between then-existing root zone
delegations. Finally, it seems it would be necessary to have a dispute resolution procedure to
handle cases where different applicants' desires went unmet.

Conclusions regarding whole-string alternatives

1. There is no historical precedent, and apparently little demand, for whole-string
alternatives to be considered as variant labels.

2. String alternatives proper would be easier to implement as variants than linguistic
alternatives, since they would be implementable by some formal rule of transformation.
However, they probably make less sense from a user-experience perspective given their
lack of ties to language.

3. If linguistic alternatives were desired as variants, generalizing them would be expensive,
because of the irregular nature of the linguistic principles in use.

4. Placing any such variants in the root will create indeterminacy in the system, and
uncertainty for users. If a user knows that linguistic variants (with all their intrinsic
unpredictability) are part of the system, it spreads the sense that what is typed (or seen
on the screen) is not necessarily what others get. This will be a pain. And it may be a
bigger pain than the convenience that others will derive in having a facility of linguistic
whole-string variants. Such a facility will inevitably be limited, and we do not yet know
how its limits could be set.

5. There are processes in place that can produce the blocking action for some of the
whole-string alternative issues described, obviating the need of widening the taxonomy
of variants for the root zone.

5. Discussion of Issues: Treatment of Variant Labels
Once variant labels are identified, a range of possible actions may be taken on such labels, such as:

Block: An administrative action by a registry over a particular string (a potential domain name)
rendering such string unavailable for allocation to anyone.

Reserve: To set aside a name for potential allocation to a particular entity (TLD registry in the case of
the root). The name is not yet allocated, but could be (to that particular entity) if/when certain
conditions are met.

Allocate: It is the first step on the way to activation. The registry makes an administrative association
between a string and some entity that requests the string, making the string a potential label inside the
zone, and a candidate for activation. Allocation alone does not affect the DNS at all.

34

Delegate: The act of entering parent-side NS (name server) records in a DNS zone, thereby creating a
subordinate namespace with its own SOA (start of authority) record. See RFC 103419 for detailed
discussion of how the DNS name space is broken up into zones.

Mirror: To activate two or more domain names such that for a namespace starting with one, the
namespace starting with the other is isomorphic to the first, subject to the usual DNS loose consistency
strictures. Currently, there are two different techniques for this. The first is aliasing: CNAME, DNAME,
and other such techniques that redirect a name or a tree, effectively substituting one label for another
during DNS lookup. The second is by using provisioning constraints, such that an underlying provisioning
system always effects a change in all of the names whenever that change is effected in one of the
names.

Activate: The act of entering parent-side DNS records in a zone (e.g., NS, DNAME, CNAME, NAPTR)
making the name entered resolvable in the DNS. (Note that delegating a name implies activating it, but
activation does not necessarily imply delegation.)

These actions may result in a different user experience, as well as having an impact on the operations of
ICANN, the TLD registry operator, and other stakeholders that are part of the Internet ecosystem. This
section discusses the issues that arise in this area as a result of variant TLD labels.

5.3.1 Possible States for Variant Labels

The states associated with the actions described above are of the predictable forms: Blocked,
Reserved, Allocated, Activated, Delegated, and Mirrored.

Since Blocked means that nobody may have the allocation, it follows that nobody could request
such a state (for that would imply some sort of proto-allocation over the domain); therefore,
Blocked is a pure matter of registry policy (in the context of this report, an action taken by the
registry for the root zone, i.e. ICANN). Blocking could be the consequence of the combination of
a registry policy and some state of the registry. For example, the rule for a code-point could be
such that, if that code point is allocated, then some other code point must be blocked.

Because blocking is a matter of registry policy, the change of a label from blocked to any other
state is either a consequence of a change in registry policy, or else a change in state in the
registry such that the blocking condition (e.g., the allocation of a label with a block-generating
code point) is removed.

19 http://www.ietf.org/rfc/rfc1034.txt

35

A Reserved status results from the combination of policy and the requests of applicants. For
example, suppose a registry policy permits (but does not require) a TLD label and its variant TLD
label to be delegated. In the event the applicant chooses not to delegate the variant TLD label,
registry policy may require that the variant TLD label be reserved to the applicant throughout
the registration lifetime of the fundamental label. In accordance with an applicant request, the
variant TLD label could move from being Reserved to being Allocated (and then anything that
can be done with an allocated label would apply).

In principle, a change in registry policy (but not a change in registry state) could cause a label to
move from Reserved to Blocked. If a change in registry state were to cause this, it would be an
indication that the registry policy was inadequate in the first place, because it had not addressed
potential conflicts well enough.

An Allocated status would result from any case where an application containing a variant TLD
label is approved, and it isn't Blocked or Reserved. An allocated status could also result when a
variant TLD label associated with a fundamental label is either also requested to be Activated, or
required by registry policy to be Activated (see below). By request, the status of an Allocated
label could be changed to Reserved. Allocated labels may normally be Activated, subject to
usual registry policies, at the initiative of the registrant of that label (i.e., in the context of the
root zone, usually the TLD operator).

An Activated status results from placing some sort of DNS record into the parent zone such that
it is possible to perform a DNS lookup on the name and receive an answer. It is possible for the
registry to require the simultaneous Activation of a group of names, denying all of them if any of
them cannot be activated. Delegation and Mirroring are just species of Activation. A domain
can be de-Activated by removing the relevant records from the DNS (for technical reasons,
when there is a delegation the name often has to be removed from both the parent side and
child side name servers in order that it stop resolving, but the details of how to ensure a name
has stopped operating completely in the DNS are beyond the scope of the present report).

5.3.2 User Experience with Variant Labels
[Section pending]

5.3.3 ICANN Operations and Variant TLDs
In applying a variant management mechanism for the root, ICANN would incur a number of
operational issues, discussed in this section.

36

5.3.3.1 Evaluation

The evaluation processes for gTLD applications are documented in the gTLD Applicant
Guidebook.20 IDN ccTLDs may currently be requested via the IDN ccTLD Fast Track process, in
accordance with the procedures in the Final Implementation Plan.21 The Fast Track was
intended to enable the introduction of a limited number of non-contentious IDN ccTLDs,
associated with the ISO 3166-1 two-letter codes, to meet near-term demand while the overall
policy is being developed. The ccNSO is undertaking a policy development process22 concerning
the introduction of IDN ccTLDs.

These current processes do not allow for the delegation of IDN variant TLDs until such time as a
variant management mechanism for the top level is in place. In the event that applications
including variant TLDs could be submitted, the construction of variant sets could vary depending
on the script or language involved. In some cases, there may be a “base label” with variant
labels associated, while in other cases, a set of variant TLD labels would be essentially equivalent
in status. Could a common format for characterizing a requested set of TLD labels be developed
or would there need to be flexibility for each case to use a specific notation? Another issue
would concern whether there was a maximum size to one of these sets, and what conditions
might apply depending on the number of labels involved.

The impact of considering variant TLD labels (“strings”) on evaluation processes depends
significantly on the approach taken to a label generation policy, as discussed in section 4.1
above. If, at the time it is evaluating specific requests, ICANN can refer to an existing
authoritative source that will produce a definitive result on whether two strings can be
considered variant TLD labels, the impact would largely consist of new sub-processes to take the
variant labels into account within existing evaluation steps.

If, however, such references are not pre-existing at the time ICANN is considering requests, then
this work would need to occur in parallel, resulting in possibly extended timelines and,
depending on the approach adopted, steps such as:

a. Review of documentation submitted by the applicant for validity.
b. Determining whether all variant labels listed in the application can be supported based

on the documentation submitted.
c. Determining whether additional variant labels that were not included in the application

should be included.

20 http://www.icann.org/en/topics/new-gtlds/rfp-clean-19sep11-en.pdf

21 http://www.icann.org/en/topics/idn/fast-track/idn-cctld-implementation-plan-16nov09-en.pdf

22 http://ccnso.icann.org/policy/cctld-idn

37

In such a case, where evaluation processes need to account for a review and determination on
the set of variant TLDs itself, issues to be addressed would include:

a. What would be the selection process and qualifications needed for individuals
performing evaluation tasks? (The Chinese case study report, for example, has
identified a need for linguistic experience and knowledge.)

b. What would be acceptable reference sources for evaluators to use in making
judgments?

c. How would ICANN ensure that evaluators were unbiased in their decisions?
d. What precedential value would be set by evaluator decisions? Could each case continue

to be assessed individually or would this create conflicts over time?

Similarly, the relevant costs for evaluation processes incurred by ICANN would vary depending
on the availability of definitive sources and rules for establishing variant labels. A process
involving ad hoc review and determinations on requests would add significantly both to the
resources needed to execute such reviews and the risks to be anticipated in such a process. To
the extent that additional costs are incurred by ICANN in connection with the evaluation of
requests for variant TLD labels, an additional aspect of the set of evaluation issues concerns
whether there should be additional fees instituted to cover any relevant costs.

These issues would seem to be consistent across scripts. While the sources and standards used
by evaluators would vary according to the relevant script, the evaluation steps themselves
would not differ.

The issues associated with treatment of variant TLD labels are discussed in section 4.3 above. If
a variant classification system is adopted, and rules are in place for how each type of variant
label can be treated, the evaluation is limited to confirmation that the application does not
conflict with these requirements. In the absence of such practices, the desired states for each of
the labels would also need to be reviewed in evaluation. Issues in such a case, in addition to
those mentioned above, would include whether a certain variant TLD label in a requested state
would create either a) a security or stability issue, or b) a user confusion or user experience
issue. State changes could require a specialized evaluation process in some cases.

Once the variant TLD labels in an application have been accepted through one of the means
described above, the evaluation tasks for a TLD application that included variant TLD labels
would proceed through the usual stages as relevant. This could include reviews for:

a. String similarity – This review determines whether an applied-for TLD is so similar to an
existing TLD or other applied-for TLD that it creates a probability of user confusion. In
the review steps developed by ICANN, this analysis is limited to visual similarity. The
string similarity review takes place in the interest of avoiding user confusion through the
delegation of many similar TLD strings. Issues to be considered in the case where
variant TLD labels are part of an application include:

38

1. to what extent the set of variant TLD labels in the application would also need

to be part of the string similarity review against existing TLDs or other applied-
for TLDs.

2. whether this review would differ based on the requested status (e.g.,
Delegated, Reserved) for any of the variant TLD labels in the application.

3. the appropriate reference sources for identification of similar characters.

b. DNS stability – This review determines whether an applied-for TLD meets the technical
string requirements. An issue to be considered in the case where variant TLD labels are
part of an application is whether all variant TLD labels included, whether intended for
active operation in the DNS or not, would need to pass this review.

c. Geographic names – The IDN ccTLD Fast Track process contains a meaningfulness
requirement: string(s) must be a meaningful representation of the name of the
corresponding country or territory. The gTLD evaluation process contains a review to
determine whether evidence of requisite government approval is provided where
required. In the case where variant TLD labels are part of an application, it would need
to be determined whether such requirements would apply to every label contained in
the application, including the variant TLD labels, or whether the requirements could be
differentiated within the set.

d. Technical/Operational/Financial – These reviews take place in the gTLD evaluation
process and test whether the applicant has the requisite technical, operational, and
financial capability to operate a TLD registry. An issue to be considered here is whether
there are additional reviews that ICANN should undertake concerning the variant
management mechanism itself, i.e., to ensure that any guidelines or requirements
concerning the applicant’s operation and management of the variant TLDs are
anticipated and understood by the applicant, and taken into account in its plans.

e. Registry services – This review takes place in the gTLD evaluation process and
determines whether the registry services offered by the applicant might adversely affect
DNS security or stability.

As an additional consideration, the gTLD evaluation process contains a mechanism for formal
objection to be filed to an application on certain limited grounds. A formal objection by a party
with standing will trigger a dispute resolution proceeding with an expert panel rendering a
determination. Note that such an objection is to an application, not to a string. In the case of
an application containing variant TLD labels, an issue to be addressed is whether the set of
labels in the application would always be kept together for purpose of the objection and dispute
resolution proceedings, or whether they could be split, so that only one of the labels within the
set was at issue.

39

5.3.3.2 Management of Established Variant TLD Labels

As discussed above, one possible approach incorporates a common set of rules developed for
the root zone, to determine the circumstances under which variant TLD labels may be
categorized with a given status (cf. section 5.3.1 above). In the absence of such a ruleset, it will
fall to ICANN to make these decisions on a case by case basis. This would for the most part take
place in an evaluation phase, except in cases where requests were being considered to change
the status for a particular variant label. In these cases, resources and standards for considering
the requests would need to be developed, raising the issues of:

a) Who is/are the appropriate parties for making determinations on such requests, and

b) What standards should be used for considering such requests.

When variant TLD labels are assigned to particular states, it will additionally be ICANN’s
responsibility to maintain records concerning the names in these various states. The database
of delegated top-level domains (i.e., the root zone database) is maintained and made publicly
available via the IANA function. To the extent that variant TLD labels are “blocked,” “reserved,”
“allocated,” etc. lists of such labels would need to be maintained and updated, along with
clearly documented procedures for the circumstances, if any, where states for these names may
be changed.

5.3.3.3 Delegation of Variant TLDs

To the extent that requests for delegation of variant TLDs are approved, this would take place
following the existing IANA delegation procedures. This would include maintaining and
publishing registration data for new TLDs, and distribution of updated zone file data according
to current procedures. There may need to be an updated record format or new fields in the
database to account for the association of one or more TLDs as variant TLDs.

5.3.3.4 Contractual Provisioning

Where a request including variant TLD labels is approved, ICANN may enter into an agreement
with the relevant registry operator. Certain frameworks are available for ccTLDs, while gTLDs
are expected to enter into a standard registry agreement with ICANN. These mechanisms can
continue to be used for cases where there are variant TLD labels. A set of issues to be resolved,
however, concerns the requirements to be followed by operators of variant TLDs. These could
include:

a. Whether there should be specific reporting requirements concerning the variant
TLDs, and if so, which data points are desired for reporting.

b. Whether specialized technical requirements for the management of the variant
TLDs are necessary to support the security and stability of the DNS, and if so,
how these requirements are specified

40

c. Whether specialized policy requirements for the variant TLDs are necessary to
support a good user experience, and if so, how these requirements are
specified.

d. Whether specific service-level requirements for performance of the variant TLDs
should be instituted, and if so, how these requirements are specified.

e. Whether the registry fee structure should be adjusted to take into account the
existence of the variant TLDs, and if so, how this should occur.

5.3.3.5 Security and Stability of the DNS

Security considerations are relevant in making the determination of which code points are valid
and should be used in top-level labels, as well as the criteria for considering requests for IDN
variant TLD labels. Similarly, such considerations are relevant in the determination of rules for
assigning variant labels to particular states, and for the management of IDN variant TLD labels.
These have been discussed in the relevant sections above.

Additionally, there has been significant study, consultation, and analysis in connection with
expansion of the root zone to include new top-level domains. Modeling, monitoring, and
reporting will continue during, and after, the first application round of the New gTLD Program,
so that root-scaling discussions can continue and the delegation rates can be managed. To the
extent that variant TLDs are delegated, these would be incorporated in this modeling,
monitoring and reporting.

Delegation of any new top-level domains is conditional on the continued absence of significant
negative impact on the security and stability of the DNS and the root zone system (including the
process for delegating TLDs in the root zone).

5.3.4 Registry / Registrar Operations
Should a variant management mechanism for the top level be adopted by ICANN, this would
entail a number of operational issues for registry operators as well as for registrars operating for
the relevant TLDs. Although not necessarily tied to ICANN’s management of the root zone,
these are issues that would be expected to be resolved the ICANN community. These issues are
discussed in this section.

5.3.4.1 DNS Resolution

Depending on the variant management mechanism implemented, delegation of variant TLDs
may mean the TLD operator is required to invest more resources in zone file generation and
management of registrations in the variant TLDs. This could also propagate to secondary name
services and therefore increase the cost of running the DNS services for the registry. The
maximum investment is possible to describe by imagining that the variant management
mechanism is implemented via mirroring without any sort of aliasing. In this case, the TLD

41

operator must in effect operate exactly as many zones as variants delegated, with a
combinatorial number of labels in each such zone.

To the extent that an aliasing behavior is desired or implemented in TLD registries, this will have
an effect on TLD registry operations. However, policies regarding DNS behavior could be
difficult to enforce beyond the level in the DNS hierarchy at which the policy is defined.
Specifically, a registry may choose to establish a policy wherein all possible variant labels will
behave the same (return the same response in the DNS) at the TLD level of the DNS hierarchy.
Although this can work in many cases at the TLD level, the DNS cannot enforce this policy on the
delegated second-level domain names in the TLD. This can have a dramatic effect on the user
experience.

5.3.4.2 Registration Process

The shared registration system (SRS) is a critical registry function enabling multiple registrars to
provide domain name registration services in the TLD. This in many cases includes the EPP
(Extensible Provisioning Protocol) interface between the registry and the registrars. Extensions
to EPP may be required to enable registration of second-level domain names under the applied-
for TLD and the variant TLDs. Without a standard implementation of such extensions, registrars
may face complexities in interfacing with these registries implementing different extensions.

Although not a variant issue per se but a general IDN issue, indications of the relevant script(s)
and language(s) for registered domain names may need to be incorporated by the TLD registry.
As noted in the Devanagari case study report, it may be sufficient in some cases to tag a domain
name with either its script or its language; however, a script may support a number of languages
and in some cases, a language uses more than one script. The technical issue is that there is no
uniform way to do this in the standard EPP protocol used.

This issue also affects registrars in two ways. To the extent there is no standard, a registrar will
have to implement all EPP extensions that various registries may choose to specify to resolve
this issue. For those ccTLDs that do not use EPP, registrars will have to implement whatever is
required in order to support that ccTLD.

In addition, when registrars are present they are the interface to the registrant. Registrars that
choose to support multiple scripts and languages will need to develop user interfaces that
facilitate and simplify the identification of the script and language in use by a registrant, and
permit the registrant to understand its choices with respect to the names it is actually
contracting to operate when registering a name subject to variants.

Accordingly, it appears that a successful registration process in variant TLDs will require
significant coordination, perhaps including an additional OT&E process, with registrars.

It will be the task of the registry operator to formulate policies on how domain names are
managed in the variant TLDs. For example, policies could cover whether the same domain name

42

under the variant TLDs must be associated with the same registrant. Consideration would also
need to be given to registry policies on expiration, deletion, and transfer of registered names. It
will also be for the registry operator to determine the appropriate pricing models for such
registration offerings. The relevant policies concerning registrations in the variant TLDs, as well
as the relevant IDN tables or other reference documents used for domain name registration at
the second or lower levels, should be made available to the public. A failure of consistency in
these policies across registries could have disastrous effects on user expectations; see section
5.3.2 for more discussion.

Careful attention to registration policies for IDN variant TLDs is essential to minimize user
confusion and opportunities for abusive registrations. It is expected that the IDN
Implementation Guidelines will be followed in this regard. The Guidelines are a list of general
standards for IDN registration policies and practices that are designed to minimize the risk of
cybersquatting and consumer confusion, and respect the interests of local languages and
character sets. Registries seeking to deploy IDNs under their agreements with ICANN have been
authorized to do so on the basis of the Guidelines. The Guidelines are, as of this writing, silent
on the practice of the management of variants.

5.3.4.3 Whois (Domain Name Registration Data Directory Service)

As discussed in several case study reports, there are two sets of issues related to IDN variant
TLDs and Whois: the first set of Whois issues are caused by the introduction of IDNs in general,
the second set of issues are caused specifically by variants. Both sets of issues need to be
addressed to ensure a good and consistent user experience for querying domain name
registration data.

Issues that IDN introduces to Whois services in general

As noted in several reports (Arabic, Chinese, Devanagari), the critical Whois issue facing the
deployment of IDNs is the fact that the standard WHOIS protocol (as defined by RFC 3912) has
not been internationalized, which means there is no standard way to indicate the character
encoding in use.

The WHOIS protocol is a simple request and response transaction: a domain name is submitted
to a server and output is returned. A consequence of the lack of internationalization is an
increasing number of local, regional, and proprietary solutions that attempt to address the
issue. This variability has a dramatically adverse effect on the user experience.

As the adoption of IDNs becomes more prevalent, Internet users will expect to be able to
register domain names as well as registrant names and addresses in their native languages,
using familiar scripts (character sets). This adoption is already well underway, increasing the
priority to address this issue.

Issues that IDN variants introduce to Whois services specifically

43

Also noted in several reports (Arabic, Chinese, Devanagari), the introduction of variant TLDs
causes a paradigm shift for Whois. Where currently there is a one-to-one lookup for a Whois
record against a domain name, this might no longer be true in the case of variant TLDs. To
illustrate this point further, consider the following domain label3.label2.label1., where each
label also has p, q, and r variants respectively, thus the total number of variants for this domain
is p*q*r, and each possible variant domain could have different statuses (e.g. reserved,
allocated, delegated, blocked, etc.).

 label31

 …

 label3p

 label21

 …

 label2q

 label11

 …

 label1r

The key issue here is to determine the correct response to a WHOIS query for a domain name
lLabel3i.label2j.label1k. (request to information for label1k in the case of the root).

These issues require careful examination to determine to what extent data elements should be
separated in the Whois database, and to what extent certain elements must always be subject
to a joined relationship. Specific issues to be worked out include:

a. For a Whois query for a domain name with variant labels, should the variant labels be
included in the response? What if the language or script of the variants cannot be
understood or displayed by the user making the request? How could this be
determined, since the WHOIS protocol does not have a mechanism to signal encoding?

b. If a U-label is reserved in the registry database but is not present in the DNS, should a
Whois request for the domain name return a referral indicating the name is a variant of
another name or return the response for the other name? or Should the response
indicate that the name does not exist?

c. Is there a need for an additional query/service, which returns the Label Variant Set
against a requested domain name? Should such a service also return the status of each
label in the set?

44

d. Would the response against a blocked variant label be different from responses to labels
with other status (reserved, allocated, etc.)?

e. Will the creation and expiration dates of the Variant Label Set be inherited from the
fundamental label, as suggested? If yes, then if a variant label is either added or changes
its state, how will this information be part of the Domain Name Registration Data?
Would history be maintained and communicated for such changes?

5.3.4.4 Data Escrow

As noted by the Chinese case study team, a specific data format has been specified in the gTLD
Applicant Guidebook for registries to submit the registration data to the data escrow service
provider. The data escrow format currently supports variants; however modifications may be
needed in light of the issues detailed in this report to support variant TLDs.

5.3.4.5 Rights Protection Mechanisms

The use of variant TLD labels (and variant domain names in these TLDs) may have an impact on
existing rights protection mechanisms such as the UDRP. The UDRP is a policy for resolving
disputes arising from alleged abusive registrations of domain names (for example,
cybersquatting), allowing expedited administrative proceedings that a trademark rights holder
initiates by filing a complaint with an approved dispute resolution service provider. In the case
where domain names exist in variant TLDs, a critical issue to be resolved concerns whether all
names in a variant set are considered together in the event of a UDRP proceeding, or whether
and under what circumstances there could be separate consideration and determinations on
some names in the set. Where certain names have different statuses, this could also have an
impact on such a case. The applicable fees in UDRP proceedings might also be adjusted to take
into account the existence of registrations in variant TLDs.

A policy whereby variant names are kept together in all UDRP cases may force registrants into
dispute resolution proceedings as a result of registry variant practice (such as automated
generation of a variant label set). However, a practice of splitting and making separate
determinations within the set runs counter to the interest in maintaining a straightforward and
predictable process, particularly since the existence of variant labels suggests that the contents
of the set are equivalent in some way.

Note also that a UDRP complainant will present trademark or rights data that does not
necessarily follow the same variant generation policies that are used for the root zone or by the
registry. A complainant must prove that the domain name in question is identical or confusingly
similar to a trademark or service mark in which the complainant has rights. Although a panel
might make use of existing variant policy references in considering a case, it is more likely that a
panel would refer to standards of trademark law for determining what is “identical or
confusingly similar,” and such standards would be an important consideration relating to issues
in this area.

45

A determination in a UDRP case may result in cancellation or transfer of a domain name, or no
action if the complainant does not prevail. Issues to be resolved in this context concern
whether a determination would also need to apply to the entire variant set, or whether could
there be a split decision concerning the treatment of names (e.g., a decision that of the set A, B,
and C, only labels A and B infringe the complainant’s rights while label C does not). There are
wide implications here given that a legal determination could trump the variant policy and
possibly conflict with accepted reference sources on which labels are considered variant labels.

In addition, the existence of variant TLDs may have an impact on new rights protection
mechanisms being instituted as part of the New gTLD Program. New gTLD registries are
required to introduce certain rights protection mechanisms during their startup phases. These
include a sunrise period and a trademark claims service to provide notice to a potential
registrant where a domain name matches a trademark that has been recorded in the Trademark
Clearinghouse. These services use a specified definition of identical match. To the extent that
registrations take place in variant TLDs according to the registry policy, these rights protection
processes should take into account the existence of variant labels. Consideration would need to
be given to the definition of identical match and the possible incorporation of variants into the
criteria for triggering a Sunrise or Trademark Claims notice.

The Uniform Rapid Suspension (URS) system is a complement to the UDRP, to be used when
suspension of a domain name is the desired outcome. Accordingly, the issues discussed above
also apply here.

The (Trademark) Post-Delegate Dispute Resolution Policy (PDDRP) addresses infringing uses of
the TLD post-delegation. However, outcomes under this policy would take the form of remedial
measures to ensure against future infringing registrations, suspension of new domain name
registrations, or, in extraordinary circumstances, termination of the Registry Agreement. Since
domain name registrants are not a party to the action, a recommended remedy would typically
not take the form of deleting, transferring, or suspending domain name registrations. In the
case of variant TLDs, the issues to be considered here would concern whether the penalties
could apply to just one of the variant TLDs, or would necessarily apply to all.

5.3.4.6 Security and Stability Considerations for TLD Registries/Registrars and Service Providers

Security and stability considerations should also be relevant to registry operators, registrars and
data escrow agents or other service providers. As noted in the Devanagari case study report, a
suggestion for evaluating variant policies and their implementation is to log, review, and analyze
DNS query traffic. Specifically, the behavior of applications and services, and sometimes the
users that use them, can be inferred from traffic patterns found in sequences of DNS queries
and responses. For example, registries could review DNS traffic of the TLD for queries of non-
existent domains (i.e., in DNS terms reviewing the NXDOMAIN responses). An analysis of these
transactions may indicate that language tables are incomplete or that variant usage is not as
expected. Conversely, an analysis of the queries that indicated that certain type of variant is not

46

being queried (while the fundamental label or other type of variant is) could indicate a
superfluous variant category.

Providing a consistent, uniform, and non-surprising (i.e., user expected) experience to the user is
an essential component of stability. DNS transaction logs could provide some insight into user
expectations and thus some ability to confirm that the needs of a user community are being
met.

Some TLD registries may wish to consider partnerships with second-level domain holders to
continue the analysis at lower levels in the DNS hierarchy.

As is clear from this section, there are a number of complex issues in the operational area that
registries, registrars, and other providers should be aware of to facilitate successful operation of
variant TLDs. As noted by the Latin case study team and others, the impact of variant TLDs on
registries and registrars may be highly dependent upon differing implementation methods, and
any proposed implementation will require broad stakeholder participation to ensure that
registries and registrars provide stable, secure, consistent, and unambiguous DNS operations.
This includes the greatest possible clarity in communication and understanding of variant TLDs,
to limit IDN end user, registrant, registrar, and registry confusion.

Areas of application behavior, resolution and registration services, WHOIS service, and business
logic all need to be examined in order to determine if these objectives are achievable.

6 Other Related Issues
A number of the case study reports described issues related to the set of variant issues, including, for
example, normalization considerations, URL display, keyboard and font related issues. These issues
relate to the general usability of IDN labels, and are key considerations in producing a good user
experience. As they do not fall entirely into the category of variant issues, they are not discussed in
depth in this report. However, a list of such issues has been compiled and is listed in <Appendix [REF]>
to provide a reference for work to proceed on these issues.

7 Concluding Sections
[TBD]

47

Appendix 1 – Terminology

Purpose of this Document
This updated Definitions document has been developed by the ICANN IDN Variant Issues Project (VIP)
team to provide a starting point for the set of definitions of the terms to be used in the final issues
report. This document is prepared for discussion, and it is expected that its content will change on the
basis of discussion prior to, during, and after the Dakar ICANN meeting in October, 2011. In particular,
the team expects that discussion will reveal where further synthesis is possible or desirable (or both),
and that the terms in need of definition will be determined in part by the shape the final report takes.

This document uses definitions from many documents that have been developed outside ICANN. The
primary documents used are:

• Internationalized Domain Names for Applications (IDNA): Definitions and Document
Framework (RFC 5890)

• Terminology Used in Internationalization in the IETF (RFC 6365)

• The Unicode standard including the standard annexes

• Each of the six case study team reports (available at:
http://www.icann.org/en/announcements/announcement-4-03oct11-en.htm).

Many of the terms in the script-specific sections are copied directly from their respective reports, and
contain cross-references and discussion that makes sense only in the context of those reports. They are
included here for convenience, and copied verbatim in order to avoid the accidental introduction of any
errors in meaning.

Methodology
In this section, we describe our proposed methodology for synthesizing these definitions.

1. First, we separate terms into two categories: general terms and case study specific terms.
General terms refer to terms that are generic and applicable to all cases (e.g. U-label, A-
label). Case study specific terms refer to those terms that are used only in a specific case
study.

2. For general terms, if it is defined in RFC 5890, RFC 6365, the Unicode Standard, we copy the
relevant definitions from those RFCs and simply refer to them.

3. For case study specific terms, we copy directly from the definition sections of the case study
report, if any.

48

4. Where terms are defined differently by different teams, the terms have been harmonized
and, if need be, expanded upon to weld them into a single term useful for the unified
report.

It is important to note that these terms are sometimes inspired by, but do not apply to, the specific
script team reports; if those reports needed special terminology, they used it, as well as the common set
of definitions originally proffered for their use. Some terms will not be useful for every script.

Format of the Definitions in this Document
In the body of this document, the source for the definition is shown in angle brackets, such as
“<Unicode>”, “<RFC6365>”. Many definitions are shown as "<IDNVIP>", which means that the
definitions were crafted originally for this document. For case study specific teams, they are shown as
<Arabic|Chinese|Cyrillic|Devanagari|Greek|Latin-VIP>. Editorial notes, particularly about problematic
definitions, are in square brackets ([]).

For some terms, there are commentary and examples after the definitions. In those cases, the part
before the angle brackets is the definition that comes from the original source, and the part after the
angle brackets is commentary that is not a definition (such as an example or further exposition).

Generic Terms

Unit (Character/Letter/Code Point……….)
Abstract Character: A unit of information used for the organization, control, or representation of textual
data. <Unicode Standard, section 3.4, D7>

Assigned Code Point: A mapping from an Abstract Character to a particular Code Point in the code
space. <Unicode Standard, section 2.4>

Code Point: A value in the Unicode code space. The meaning here is restricted to meaning D10 in the
Unicode Standard, section 3.4. <Unicode Standard, section 3.4>

Label Valid Character: An Abstract Character which might be used to form a label; it may be any sort,
including letters, digits, diacritics, and so on. These are Abstract Characters, not Unicode Code Points.

Valid Code Point: In a Language Variant Table, the list of code points that is permitted to be registered
for that language. Any other code points, or any string containing them, will be rejected…. The Valid
Code Point list appears as the first column of the Language Variant Table. <RFC 3743, section 2.1.12>
The term Valid Code Point is deprecated in this report, because it can be confusing depending on the
context. Use “Label Valid Code Point” instead.

49

Protocol Permitted Code Point: A code point that has either the property PROTOCOL VALID, or has the
property CONTEXT RULE REQUIRED, as defined in RFC 5892. <IDNVIP> Note that not every Protocol
Permitted Code Point may be used in any given zone: zone administration policy, the satisfaction of
protocol-required context rules, and zone-specific context rules may all disallow code points to be
registered that are otherwise Protocol Permitted.

Label Valid Code Point: The subset of Protocol Permitted Code Points listed in the Label Generation
Policy of a zone, and which may be used to form a label within that zone. <IDNVIP> Note that a Label
Valid Code Point may not always be valid in a given label: context rules could still rule out the Code Point
at that position in a string.

Root Zone Label Valid Code Point: The subset of Label Valid Code Points that may be used to form a
label inside the root zone.

Table, Repertoire, …
Language Character Repertoire: A set of Code Points identified by some identifier (such as a tag for
identifying language as defined in RFC 5646). The definition of the Language Character Repertoire is
ideally performed in a way appropriate to some community of language users, and might colloquially be
understood as “the characters used to write a language”. In most cases, most of the Code Points in a
Language Character Repertoire will come from the same Script Table. <IDNVIP>

Language Variant Table: The key mechanisms of [RFC 3743] utilize a three-column table, called a
Language Variant Table, for each language permitted to be registered in the zone. Those columns are
known, respectively, as “Valid Code Point,” “Preferred Variant,” and “Character Variant,” and are
defined separately …. <RFC 3743> Language Variant Tables are one type of Label Generation Policy.
The original RFC 3743 definition has been expanded upon considerably in various deployed systems, and
not every deployed table has exactly three columns. In order to reduce confusion, this document will
use Language Variant Table only to refer to such tables as conform to the specification in RFC 3743.

Script Table: A Script Table is a table of Unicode Code Points all having the same script property value.
<Unicode Standard Annex #24>

Labels, TLDs, Names, Strings, ….
A-label: An ASCII-Compatible Encoding form of an IDNA-valid string. <RFC 5890> The full definition for
A-label is in RFC 5890, together with the definition of U-label and some ancillary definitions. The reader
is urged strongly to see that document. A-labels must be complete labels: IDNA is defined for labels, not
for parts of them and not for complete domain names. By definition, every A-label begins with the IDNA
ACE prefix, "xn--", followed by a string that is a valid output of the Punycode algorithm (RFC 3492) and
hence a maximum of 59 ASCII characters in length. The prefix and string together must conform to all
requirements for a label that can be stored in the DNS including conformance to the rules for LDH labels.
Apart from all the other requirements, a string can only be an A-label if it can be decoded into a U-label

50

using the Punycode algorithm, which U-label can be decoded back into the same original string using the
same algorithm.

U-label: An IDNA-valid string of Unicode Code Points, in Normalization Form C (NFC) and including at
least one non-ASCII character, expressed in a standard Unicode Encoding Form (such as UTF-8). <RFC
5890> The full definition for U-label is in RFC 5890, together with the definition of A-label and some
ancillary definitions. The reader is urged strongly to see that document. A candidate string, to be a U-
label, is subject to the constraints about permitted characters that are specified in Section 4.2 of RFC
5891 and the rules in Sections 2 and 3 of RFC 5892, and the Bidi constraints in RFC 5893 if it contains any
character from scripts that are written right to left. Apart from all other requirements, a string can only
be a U-label if it can be decoded into an A-label using the Punycode algorithm, which A-label can be
decoded back into the same original string using the same algorithm.

Domain: A domain is identified by a domain name, and consists of that part of the domain name space
that is at or below the domain name which specifies the domain. <RFC 1035> The Domain Name
System (DNS) name space is a tree structure, with each node and leaf on the tree corresponding to a
resource set. These nodes are identified by their names, and the portion that is so named (including
everything underneath) is called a “domain”. For example, the domain “example.com.” is inside the
“com.” domain, which is inside the zero-length root domain (“.”). The names “two.one.example.com”
and “one.example.com” are both in the “example.com” domain, with “two.one.example.com” also
being inside “one.example.com”. Not every domain is a Zone.

Zone: A division of the data in the DNS, defined by the boundaries of all the cuts in the database relative
to its domain. <RFC 1034, section 4.2> Note that the foregoing text is not taken verbatim from RFC
1034. In particular, RFC 1034 describes the zones only after all the cuts are made in the database; but
for the practical purposes of identifying the zones for a given domain name, it is enough to know where
all the parent-side and child-side zone cuts are for that name. The cuts are identified by SOA (Start of
Authority) Resource Records. For a complete understanding of zones, zone cuts, classes, and domains,
the reader is directed to RFC 1034.

Fundamental TLD: The Fundamental Label form of a Variant TLD Set. <IDNVIP>

Fundamental Label: The U-label used as the basis for producing the Variant Label Set. <IDNVIP> In many
cases, this will be the label received as a request for allocation by the registry for the zone. In cases
where the Label Generation Policy is implemented using a Language Variant Table, the Fundamental
Label must be constructed entirely from Valid Code Points (and might not be the label received in a
request for allocation).

Policy-Valid Label: A U-label or A-label which is valid under the Label Generation Policy for the zone.
<IDNVIP> For practical purposes, the test of validity under the policy will likely be performed on the U-
label form.

51

Internationalized Domain Label (IDL): The term “Internationalized Domain Label” or “IDL” will be used
instead of the more general term “IDN” or its equivalents. This is the string of characters of the domain
name being applied for and has been validated as suitable for inclusion in the DNS zone file. In the case
of an IDN TLD, the IDL is simply the string of characters of the TLD being applied for and has passed the
evaluation.

Variant Label: A U-label that results when a Fundamental Label is processed using the Label Generation
Policy. <IDNVIP> For the purposes of implementation, this operation needs to be reversible; if the
resulting Fundamental Label is ambiguous (that is, more than one Fundamental Label results), the
handling of such a result needs to be covered by the Label Generation Policy.

Activated Variant Label: A Variant Label that is activated by a registry.

Allocated Variant Label: A Variant Label that is allocated by a registry.

Blocked Variant Label: A Variant Label that is blocked by a registry (to avoid a conflict) and is not allowed
to be allocated.

Reserved Variant Label: A Variant Label that is reserved by a registry without allocation but which may
be allocated on request.

Reserved Name: A name set aside for a potential allocation to a particular registrant (or TLD registry in
the case of TLDs in the root). The name is not allocated, but could be if/when certain conditions are met.

Sets, Subsets, ….
Variant Character Set : The set of code points consisting of a Valid Code Point and all of its variants.

Variant Label Set : A set of U-labels consisting of one Fundamental Label and its zero or more Variant
Labels.

IDL Package: An “IDL Package” is a collection of IDLs as determined by the guidelines in RFC 3743. All
labels in the package are "reserved", meaning they cannot be registered by anyone other than the
holder of the Package. These reserved IDLs may be "activated", meaning they are actually entered into a
zone file as a "Zone Variant". The IDL Package also contains the language tag. The IDL and its variant
labels form a single, atomic unit, however, not all labels in the package are active.

Activated Variant Label Subset: The subset of Variant Label Set that is activated, or alternatively, the set
containing the Fundamental Label and all its Activated Variants.

Allocated Variant Label Subset: The subset of Variant Label Set that is allocated, or alternatively, the set
containing the Fundamental Label and all its Allocated Variants.

Reserved Variant Label Subset: The subset of Variant Label Set that is reserved, or alternatively, the set
containing all the Reserved Variants of a Fundamental Label (and the Fundamental Label, if it is not
activated).

52

Blocked Variant Label Subset: The subset of Variant Label Set that is blocked, or alternatively, the set
containing all the Blocked Variants of a Fundamental Label.

Policies
Label Generation Policy : A formal specification that can be used to formulate or validate a label and
determine whether two labels can be considered distinct for allocation. If two labels are not considered
distinct for allocation, as per the policy, they are referred to as variants of each other. Variants are
symmetric in Arabic script.

TLD Label Generation Policy: A formal specification that can be used to formulate or validate a TLD label
and determine whether two TLD labels can be considered distinct for allocation.

Arabic Script Label Generation Policy: Policy specified to generate labels for Arabic script. For Arabic
script, this would include at least a list of Protocol Valid Code Points allowed in forming labels, their
Character Variants, additional Label formation constraints/rules and meta information (e.g. including
script, owner, version, date, etc.).

Arabic Script TLD Label Generation Policy: Policy specified to generate TLD labels for Arabic script.

Domain Name Blocking Policy: Refers to a policy that has effect of certain domain names in a TLD
registry becoming unavailable for allocation (for example, due to implementation of variant-related
policies).

Actions/Processes
Allocation: In a DNS context, the first step on the way to Delegation. A registry (the parent side) is
managing a zone. The registry makes an administrative association between a string and some entity
that requests the string, making the string a (candidate) label inside the zone, and a candidate for
delegation. Allocation does not affect the DNS itself at all. <IDNVIP>

Delegation: In a DNS context, the act of entering parent-side NS (nameserver) records in a zone, thereby
creating a subordinate namespace with its own SOA (start of authority) record. See RFC 1034 for
detailed discussion of how the DNS name space is broken up into zones. <IDNVIP>

Activation: The process of making a domain name resolvable.

Reservation: In Arabic Script IDN variants context, this is the process of having an unallocated variant
label which relates to a Fundamental label that is allocated.

Blocking: In Arabic Script IDN variants context, this is the process of having a variant label not allowed
for allocation to anyone as long as its Fundamental label is allocated.

Name Aliasing: The abstract concept of two or more domain names “behaving as one” by Policy or
technical means. This concept has still unresolved issues, definitional, technical and political. Currently
this concept is technically served by the use of CNAME and DNAME records in a zone file, allowing for

53

the aliasing of a domain name or a DNS tree to another. With the introduction of the concept of
variants, arguments have been raised for the necessity of the presentation of a mechanism that would
allow the users to keep in sync domain name trees but without the limitations of DNAME and CNAME.
Experts have discussed the use of a CNAME+DNAME kind of record but without concluding on the
advantages and disadvantages such a record would present. Issues with the use of DNSSEC, and the
inability to address what “behaving as one domain name” stands for in the real world have stalled the
discussions on this issue.

Bundling Domain Names: The registry policy of registering certain domain names as a set, depending on
select characteristics (e.g. homograph domain names). In some cases, bundling is used for name aliasing
purposes.

Domain Name Bundling: Registration technique that makes multiple domain names share all registration
parameters (such as creation/expiration date, associated name servers etc.) except the domain name
itself. Changes to any of these registration parameters should normally take effect on all the domain
names in a bundle.

Variants Definitions
Arabic Script Character Variant: A Label Valid Character which is replaceable with another Label Valid
Character within a label, as defined by a Label Generation Policy. The relationship is symmetric in Arabic
script.

Character Variant: In a Language Variant Table, a “Character Variant” is an entry on the second list of
code points corresponding to each Valid Code Point and providing possible substitutions for it. Unlike
the Preferred Variants, substitutions based on Character Variants are normally reserved but not actually
registered (or “activated”). Character Variants appear in column 3 of the Language Variant Table. The
term “Code Point Variant” is used interchangeably with this term.

Preferred Variant: In a Language Variant Table, a “Preferred Variant” is an entry on the list of code
points corresponding to each Valid Code Point and providing possible substitutions for it. These
substitutions are "preferred" in the sense that the variant labels generated using them are normally
registered in the zone file, or “activated.” The Preferred Code Points appear in column two of the
Language Variant Table. “Preferred Code Point” is used interchangeably with this term.

Zone Variant: A “Zone Variant” is either a Preferred or Character Variant Label that is actually to be
entered (registered) into the DNS, that is, into the zone file for the relevant zone. Zone Variants are also
referred to as Zone Variant Labels, active labels, or Activated Labels.

Alternate Names: Two names are alternates of one another just in case, for a namespace starting with
one, the namespace starting with the other is isomorphic to the first, subject to the usual DNS loose
consistency strictures. In the current DNS, there are 2 different techniques for this. The first is aliasing:
CNAME, DNAME, and other such techniques redirect a name or a tree, effectively substituting one label
for another during DNS lookup. The second is by using provisioning constraints, such that an underlying

54

provisioning system always effects a change in all of the alternate names whenever that change is
effected in one of the alternates. A fuller discussion of this topic is included for information in Appendix
B.

Aliased name: A domain name that has been aliased with one or more names under the concept of
Name Aliasing. The technical solution that is currently available for aliasing a domain name to another is
the use of a CNAME or a DNAME record in a zone file, essentially mapping a domain name or a DNS tree
to another. Voices for other technical solutions have been raised over the last few years but without any
results.

Homograph: A word that shares the same written form with a word of the same or different script but
may have different meanings. The same could apply for any string of letters, even if not a word. The
characters that make this possible between scripts are mentioned as homograph characters in the
document (e.g. the Latin A and the Greek Α).

Homophone: Two different words that are pronounced the same. The same could apply for any string of
letters, even if not a word.

[The term "homograph" has a well-established definition as being a property of words within a
language. It does not extend across language/script boundaries. Code points in different language/script
that are represented using the same glyph are "homoglyphs" and, as this term is language/script
agnostic, it can also be applied to two elements of the same language/script. Two strings that appear to
be identical but in fact contain one or more homoglyphs are "homoglyphic strings". If they are not
exactly the same, it is correct to speak of their homoglyphic distance. This in turn provides a potential
metric for similarity.]

Combining Marks: A commonly used synonym for combining character; a character with the General
Category of Combining Mark (M). [source: Unicode]

Composite-character variants: Abstract Characters that do not have a single assigned code point
assigned, but can be represented by multiple code points.

Font: A collection of glyphs used for the visual depiction of character data. A font is often associated
with a set of parameters (for example, size, posture, weight, and serifness), which, when set to
particular values, generate a collection of imagable glyphs. <UNICODE>

Glyph: (1) An abstract form that represents one or more glyph images. (2) A synonym for glyph image. In
displaying Unicode character data, one or more glyphs may be selected to depict a particular character.
These glyphs are selected by a rendering engine during composition and layout processing. <UNICODE>

Glyph Image: The actual concrete image of a glyph representation having been rasterized or otherwise
imaged onto some display surface. <UNICODE>

55

Writing style: Conventions of writing the same script in different styles. Different communities using the
script may find text in different writing styles difficult to read and possibly unintelligible. For example,
the Perso-Arabic Nastaliq writing style and the Arabic Naskh writing style both use the Arabic script but
have very different renderings and are not mutually comprehensible. Writing styles may have
significant impact on internationalization; for example, the Nastaliq writing style requires significantly
more line height than Naskh writing style. <RFC6365>

IDNA Symmetry Constraint: A-label/U-label transformation must be symmetric: an A-label A1 must be
capable of being produced by conversion from a U-label U1, and that U-label U1 must be capable of
being produced by conversion from A-label A1. <RFC 5890>

Language Tag: Language tags, as defined in RFC 5646, are used to help identify languages, whether
spoken, written, signed, or otherwise signaled, for the purpose of communication. This includes
constructed and artificial languages but excludes languages not intended primarily for human
communication, such as programming languages.

Case Specific Terms

Arabic
Arabic Letter: are used to write Arabic script based languages and used to write words.

Non-Joining Characters: Those characters that do not connect to letters before or after them; e.g.
U+0621 LETTER HAMZA, U+0674 HIGH HAMZA, and U+200C ZWNJ.

Right-Joining Characters: Those characters that connect to the letter before them; e.g. all letters based
on ALEF, REH, DAL, and WAW, and a few other letters.

Dual-Joining Characters: Those characters that connect to the letters before and after them; e.g. all
other Arabic letters than those listed above.

Join-Causing Characters: Those characters that connect to the letters before and after them, but do not
change shape themselves; i.e. only U+200D ZWJ and U+0640 TATWEEL. With respect to those
categories, Arabic Script Letters could be defined as follows:

Non-Joining Letters: The group of non-joining characters which are letters (by Unicode's definition); i.e.
U+0621 LETTER HAMZA and U+0674 HIGH HAMZA.

Joining Letter: The union of Right-Joining Letters and Dual-Joining Letters which cursively join with
letters following them.

Right-Joining Letters: The group of right-joining characters which are letters; i.e. all letters based on
ALEF, REH, DAL, and WAW, and a few other letters.

Dual-Joining Letters: The group of dual-joining characters which are letters; i.e. all other Arabic letters.

56

Arabic-Indic Digits: Forms of decimal digits commonly used along with Arabic script and comprised of
two sets of digits. The set <U+0660-9> is commonly used in Arabic-speaking world, while the set
<U+06F0-9>, often referred to as Eastern Arabic-Indic, is used in Iran and Pakistan. Although European
digits (1, 2, 3,…) derive historically from these forms, they are visually distinct and are coded separately.
(Arabic-Indic digits are sometimes called Indic numerals; however, this nomenclature leads to confusion
with the digits currently used with the scripts of India.)

Arabic Digits: The term "Arabic digits" may mean either the digits in the Arabic script (see above and
Arabic-Indic digits) or the ordinary ASCII digits. When the term "Arabic digits" is used in Unicode
specifications, it means Arabic-Indic digits.

Arabic Ligature: A single glyph representing a combination of one or more Arabic Letters. This means
that the isolated form of a character can be considered a ligature. It's worth noting that this is different
from the Unicode use of the term.

Form of a Letter - Arabic Script: A Letter in Arabic Script can occur in up to four different forms within a
ligature. These include the following:

Isolated form:

It is the standalone form of a Letter, i.e. when the letter does not join with any other letter,
forming a single letter.

Initial form:

It is the form of a right-joining-letter when it occurs in the beginning of a ligature, joined with at
least one more letter after it, to form a ligature.

Medial form:

It is the form of a right-joining-letter when it occurs in the middle of a ligature, joined with at
least one letter on either side, to form a ligature.

Final form:

It is the form of a joining-letter when it occurs at the end of a ligature, joined with at least one
more character before it, to form a ligature.

Chinese
Han Script Variant: Characters with different visual forms but with the same pronunciations and with the
same meanings as the corresponding official forms in the given language contexts. For more details
please refer to the section 5 of this report.

57

Chinese Official Form: In different country/region, the government specifies “official forms” for a set of
general use Hanzi. In Mainland China, they are called normalized Hanzi (规范字 U+89C4 U+8303
U+5B57), and in Taiwan, they are called orthographic Hanzi (正體字 U+6B63 U+9AD4 U+5B57).

CJK Characters: “CJK characters” are characters commonly used in the Chinese, Japanese, or Korean
languages, including but not limited to those defined in the Unicode Standard as ASCII (U+0020 to
U+007F), Han ideographs (U+3400 to U+9FAF and U+20000 to U+2A6DF and U+2A700 to U+2B73F and
U+2B740 to U+2B81F), Bopomofo (U+3100 to U+312F and U+31A0 to U+31BF), Kana (U+3040 to
U+30FF), Jamo (U+1100 to 11FF and U+3130 to U+318F), Hangul (U+AC00 to U+D7AF and U+3130 to
U+318F), Kangxi Radicals(U+2F00 to U+2FDF), CJK Radicals Supplement (U+2E80 to U+2EFF), and the
respective compatibility forms.

CJK Unified Ideograph: An ideograph is a graphic symbol that represents an idea. Chinese Hanzi,
Japanese Kanji and Korean Hanja are often referred to as ideographs. Since 1990, tens of thousands of
Chinese Hanzi, Japanese Kanji and Korean Hanja have been merged into CJK Unified Ideographs and
their Extension in ISO/IEC 10646 and Unicode. In this document, if not otherwise specified, the term
“ideograph” means a CJK Unified Ideograph.

Cyrillic

Greek
Greeklish (Source: Wikipedia, http://en.wikipedia.org/wiki/Greeklish, text in Italics): a portmanteau of
the words Greek and English, also known as Grenglish, Latinoellinika/Λατινοελληνικά or ASCII Greek, is
the Greek language written using the Latin alphabet. Unlike standardized systems of Romanization of
Greek, as used internationally for purposes such as rendering Greek proper names or place names, or
for bibliographic purposes, the term Greeklish mainly refers to informal, ad-hoc practices of writing
Greek text in environments where the use of the Greek alphabet is technically impossible or
cumbersome, especially in electronic media. Greeklish was commonly used on the Internet when Greek
people communicate by forum, e-mail, IRC, instant messaging and occasionally on SMS, mainly because
older operating systems didn't have the ability to write in Greek, or in a Unicode form like UTF-8.
Nowadays most Greek-related content appears in native Greek.

Tonos: Greek accent mark, acute accent (Greek Tonos, U+0384)

Dialytika (diaeresis): Greek accent mark (appears on the letters “ϊ” (e.g. Greek small letter iota with
dialytika, U+03CA) and “ϋ” (e.g. Greek small letter upsilon with dialytika, U+03CB) to show that a pair of
vowel letters is pronounced separately, rather than as a diphthong – see
http://en.wikipedia.org/wiki/Diphthong). It can also be combined with tonos over the same letters,
Greek small letter iota with dialytika and tonos, U+0390 and Greek small letter upsilon with dialytika and
tonos, U+03B0.

Katharevousa: (Greek: Καθαρεύουσα, [kaθaˈrevusa], lit. "puristic [language]"), is a form of the Greek
language conceived in the early 19th century as a compromise between Ancient Greek and the Modern

58

Greek of the time, with a vocabulary largely based on ancient forms, but a much-simplified grammar.
Originally, it was widely used both for literary and official purposes, though seldom in daily language. In
the 20th century, it was increasingly used for official and formal purposes, until Dimotiki became the
official language of Greece in 1976 (Source: Wikipedia, http://en.wikipedia.org/wiki/Katharevousa).

Dimotiki: (Greek: δημοτική [γλώσσα] [ðimotiˈci], "[language] of the people") is the modern vernacular
form of the Greek language. The term has been in use since 1818. Demotiki refers particularly to the
form of the language that evolved naturally from ancient Greek, in opposition to the artificially archaic
Katharevousa, which was the official standard until 1976. The two complemented each other in a typical
example of diglossia until the resolution of the Greek language question in favour of Demotiki (Source:
Wikipedia, http://en.wikipedia.org/wiki/Dimotiki).

